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The theory developed in I is generalized into a variational many-electron theory by making the first-order
correlation processes in the wavefunction “exact to all orders” and by including the effects of unlinked
clusters. Equations for obtaining the significant correlation effects are derived by the variation-perturbation
approach. Symmetry properties of the correlation functions and a semiempirical theory based on the form
of the variational energy are also discussed. The examples of lithium, 1.5-carbon, and C.H,* illustrate some

aspects of the theory.

I. INTRODUCTION

HIS series of two papers develops a theory of elec-

tron correlation for nonclosed-shell systems such as
excited states of atoms and molecules, triplet states,
free radicals, and transient species. Paper I' discussed
the nonclosed-shell orbital wavefunction starting point.
The first-order Schrodinger equation was solved and
gave the significant “first-order processes.” In this
paper we make the first-order correlation processes
“exact to all orders,” include unlinked clusters, and
obtain the variational total energy as an upper bound.
We then apply the variational-perturbation approach
to derive equations for evaluation of individual correla-
tion functions. These results turn the first-order theory

of I into a variational nonclosed-shell many-electron
theory which should be sufficiently accurate for calcu-
tions. Symmetry properties of the correlation functions
and how a semiempirical correlation theory can be
based on the form of the energy are also discussed.

II. WAVEFUNCTION ADOPTED IN THE
NONCLOSED-SHELL MANY-ELECTRON THEORY

One can obtain a better approximate wavefunction
than first order by keeping the same form for the
wavefunction as in first order, but by calculating the
cotrelation functions from the wvariational principle
(thus obtaining the correlation functions “to all
orders”). Equations (63) and (64) of I lead (in this
manner) to the approximate wavefunction, ¢grur+xa:

)
SarREF+Xa= KZ:ICK(AK+XK) ) (1)
Qf (krka*++kn)}, (2)
FePE lf kaks: 1 Py,
xx= @{(k’k”' o) [2 R IZ_% ) e Vo) k»)]} )
A#=knks, -k N)

Note that our normalization convention [Egs. (4)-(6)
of I]is

(¢arur, dorErF)=1; (¢crar, xa)=0. (4)

The “best” x¢ would be found by minimizing E4

{parur+xq, H (porur+xa) )
(pcruF+Xd, PoruF+X0)

Es= ()

with respect to variations of the f’s and @’s, subject
only to symmetry restrictions (see Sec. IV) and the
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one-electron orthogonality conditions [cf. Eq. (15) of I']:
(m: f.ka(P)K> = <m7 fK"akb: l>= <m7 Wiotes ) =0,
(m=1,2-+-M). (6)

The important correlation effects in x4 are: (1) ex-
ternal pair correlations #%; x, representing a “collision”
between electrons in spin orbitals %, and %, which
scatters both electrons outside of the GRHF sea;
(2) semi-internal correlations fKi,:: representmg a
collision of two electrons in £, and k,, in which one
electron ends up outside the sea in FELki1, the second
in spin orbital /; and (3) f, D%, polarlzatlons of spin
orbital %,. The polarlzatlons fe. X are spin polariza-
tions (which make orbitals of a and 8 spin different),
symmetry polarizations (which, e.g., add d character
to an s orbital), and/or configuration polarizations
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MANY-ELECTRON THEORY.

(which tend to make %, in one configuration in ¢arar
different from %, in another). They are not the higher-
order effects of correlation on orbitals which are prob-
ably small in open-shell states, as they usually are in
closed-shell states.? Note that the K denoting parentage
dependence (determinant Ax) is written here as a
superscript; in the first-order functions K was a sub-
script.
xa Will approximate the exact x closely when:

(1) Internal correlation with respect to ¢erur is
negligible. [cf. Egs. (7)-(9), and (60) of I].

(2) The U(1)KN_1 and U(2)KN_ [Eq (13) of I] have
the physically meaningful internal structures (in terms
of the fo, K, f&; 4.1, and 7%;,4,) implied by Eqgs. (43)
and (44) of L.

(3) The Umgy.. [cf. Eq. (13) of I] are negligible
for n>2.

The first two conditions are quite reasonable. The
third condition can be improved upon. Though true
(linked cluster) n>2 correlations may be quite small
(at least in some nonclosed-shell states) (see below),
the 0’ mE&x_. contain unlinked clusters of the f’s and
#'s, which may be significant. The unlinked clusters
are easily included (and should be) in the theory
(see below).

Unlinked clusters represent two or more electron
correlation effects occurring in separate groups of elec-
trons at the same time. In closed-shell states (usually)

11 3609
only pair correlations #;; are important.2— The simul-
taneous correlations of two pairs, for example (77) and
(kl), are represented®® by 4,4, The x of the closed-
shell many-electron theory, x’s, contains all pair corre-
lations and their unlinked clusters [ Eq. (27) of Ref. (3) ].
The open-shell x contains unlinked clusters of not only
the 4.;’s, but also of nonnegligible open-shell-type f’s
and of such f’s and #’s.

The unlinked clusters involving two or more j’s
greatly complicate the open-shell formalism. When
there are only one or two open shells localized in one
region of space, only those few spin orbitals located
near the open shells should have 51gn1ﬁca,nt fis. [Note
that AVix,, Eq. (46) of I, which gives rise to fix®,
involves mainly the Coulomb and exchange operators
of the open-shell electrons.] The unlinked clusters
affect the energy mainly by cancelling the normaliza-
tion denominator (see Sec. III). We do not expect the
few significant s to contribute largely to the denomi-
nator or to the cancellation, and so for simplicity we
do not include unlinked clusters 1nvolv1ng two or more
f’s in the approximate x. [For systems in which fXf
unlinked clusters would be significant, e.g., a diradical,
two lithium atoms far apart, etc., the important
clusters can be easily put in (e.g., z—n-l—f,, etc).%]

The generalization of x4, which is the basic correlation
wavefunction of the nonclosed-shell many-electron theory,
and which contains all unlinked clusters of the A% 1
and all unhnked clusters having at most one fi,®X or
f kaksims 18 X'a

()
x'a= 2. Crx'x, @)
K=1
fra® < @k, W Wt )
'x=@1 (kikse+k [ 4271 o5 e
XK {( ke k) | 2 (ka) 15b‘<v_c:sN (koke) bz<c d2<:e (kokckake)
(b,c5a) (b <d;b,c#d,e;b,c,d.e #a)
M K s m( 8, F K
+ - 142+ +2‘1 ———— e )
1<a§b:<N mz=:1 (kakes) 1Z<J ( ) lZ<J Ez (i7ip)
(m <k ks, - ke N) .3 =kuke, « - -k xym; but #ka,kp) (@ <Li,d #Lpi,gbp =kyks, - - -k yom; but #kgks)
, ﬂKkak:. B s B rks :“
+2 —t ;- 8
ISESN (kukb) aE<b ;ﬂ (k kbkckd) ( )
(a <ciab#c,d)
Parentage lation functions are independent of parentage,

Correlation functions for the same process in dif-
ferent (parent) determinants may differ (d—
different), as discussed in Sec. IV of Paper I. If the
pair (i7) occurs in #» different determinants, there can
be n different 4, functions. A reasonable computa-
tional simplification would be to make all # of the #:;%
functions the same. Accordingly, we define the “anony-
mous parentage’’ approximation x’, in which all corre-
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2 (a) O. Sinanoglu and D. F. Tuan, J. Chem. Phys. 38, 1740
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3Q. Smanog]u J. Chem. Phys. 36, 706 (1962).
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Symbolically,
x's=x"4(no parentage subscripts). (9)

There are cases, however, where /i ®X and f,(PL
must differ because of symmetry, even when K and L
belong to the same configuration. [see Egs. (67)—(69)
for an illustration.| (For #;s, the anonymous parent-
age approximation seems consistent with symmetry
requirements. See Sec. IV.) Clearly, one may then
define a ‘“hybrid” x in which some correlation func-
tions depend on parentage while others do not.

¢GrEF VS ¢pur as the Starting Point

As discussed in I, the restricted Hartree-Fock (RHF)
orbital wavefunction is a good approximation for many
problems (e.g., first-row atoms).?> Then xin®"F can
be obtained by near-degeneracy-type configuration
interaction, and Eq. (17) of I is valid. But if ¢grur
can be obtained directly from ¢grur, can the many-
electron x be obtained by direct generalization of the
RHF-perturbation results?

The ¢ruar+xPEEF is given by Egs. (32) and (36)

of I
] ()
drur+xORHF= 3 Cx (Ax+xx®)+ D CxDAk. (10)
Jra= K=

By removing the first-order restriction on xx® and
Cx® one could obtain an approximation x;®¥ analo-
gous to xa [Egs. (1)-(3)7. The ¢rur+ xR would be
the same as ¢grur+xas except for the external corre-
lations in xq arising from the Ag, K> «, and for normali-
zation. In the next step, i.e., the insertion of higher-
order correlation effects (including unlinked clusters),
the following questions arise:

(i) When each Ag(K>«) is expanded to include
correlation effects, Ax—Ax+xx, should xx contain only
external correlation effects or additional internal corre-
lation effects (which might be called the effects of
correlation on coefficients)?

(ii) Should internal correlation effects enter unlinked
clusters in xx, (K <«)?

(ili) Will the f; which enter xx, (K>«), be large
corrections (which would try to turn the RHF orbitals
into the GRHF orbitals)?

These questions are avoided by including the RHF
internal correlation in ¢| (i.e., going over into ¢arur)
in a self-consistent way.

N
E;= EGRHF—I—D_IZ | Cx ]2 {ngu(P)K'i'
K a=1

SILVERSTONE AND O. SINANOGLU

Although a complete and direct generalization of
¢ruar+xWREF to a variational many-electron wave-
function is difficult, when ¢rur is a good orbital wave-
function the x’s [Eqgs. (7) and (8)] may still be
regarded as based on ¢rur in the numerical sense of
Eq. (17) of I. The x'x for (¥) > K> « includes dynami-
cal correlations between electrons spending a small
fraction of time in the unfilled portion of the RHF
sea, i.e., in xin®F. Since these are like correlations on
top of correlations, they ought to be small where
xint™8F is already small, i.e., where ¢rur is a good
approximation.

III. VARIATIONAL ENERGY

Above we developed an approximate x[x’q, Eqs. (7)
and (8)] which accounts for the physically important
correlation effects in the exact wavefunction. In this
section we discuss the variational energy from the
viewpoints of a nonempirical calculation, a semi-
empirical theory, and comparison of correlation energies
of similar systems. First we discuss the variational
energy with xq, £s [Eq. (5)], then with x’a(E's). The
E'y is essentially Eq modified by unlinked clusters.

Energy with x4
From Egs. (1) and (4), Eqis
2{¢arnr, Hxa)+ (xa, (H—~ Ecrur) Xa)

E;= Egrur+ 15 (xa, xa) (11)
¢IRED)
= Egrar+ D1{ ; ;CKCLl:z(AK, Hxy)
+ (xx, (H— Egrur)xz)1}, (12)
where
Ecrur= {¢crur, Hocrur), (13)
D=1+ (x4, xa)- (14)

For simplicity we have taken ¢crur and xq to be real.
The matrix elements in Eq. (12), expanded in f—4
notation, are extremely complex. The various terms
may be classified as diagonal correlation energies,
“diagonal” terms arising from two determinants, sig-
nificant ‘““cross-correlation” energies, and remainder
terms including more than two electrons correlating
at a time.

M
> 2 Epmt D Een)

1<a<b<N m=1

1<a<bN

(m =2knke, -« -k N)

=+ (“diagonal” two-determinant terms)+- (significant “cross correlations”) + (R/D),

(15)
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MANY-ELECTRON THEORY. II

N N
K=k, (0t 20 B e (5, (04 3 Sey=me)fou ),
b=1 b=l

(b<a)
N N
kK = Egrur— Z ko, HORyY— E (S sk — K
b=1 b<e
(b #a) (b #a #c)

N - - A~
k1= 2(B (kaks) , 8128 iakit) Y { Franity, B+ D5 SeatSi— 1%kt 1) [t 1),
=l

N N

oo 1=Ecrur— D, (ke k)= D, (Jika—
=1 e<d
(c%a,b) (c,d #a,b)

N
i =2(B (kaky), 2158b,ky )+ Bty (D) +10(2) +got D L8k (D48 (2) T— 10k} #kats )y

N
o= Ecrir— 2, {ke, WOk,)—
=1

(¢ #~a,b)

e<d
(c,d #a,b)

where B is the two-electron antisymmetrizer, /° the
bare nuclei Hamiltonian, gis=r"", J;; and K’’;; are the
Coulomb and exchange integrals, and §; is the Coulomb
minus exchange operator for Spin Orbital ¢. The »’s
are constants.

R consists of three- and four-electron terms, as in the
closed-shell case, and two- and three-electron integrals
involving f’s and f’s and #’s. (We omit here the long,
tedious, explicit expression for R.) Are all the effects
appearing in R, especially the three-electron terms,
negligible for a general nonclosed-shell state? This is
uncertain. For any given case, the magnitudes of these
effects can be checked by the variation-perturbation
procedure.

Apart from the denominator D, &,®X may be inter-

3B, Aant)[(B(20:)%, g2B(2p,) )+ (B(2p2)? g12B(29:)2)+ (B(29,)%, g:2B(2p:)%)]-

N
Z (chkd_K”kckd) ’

3611

(16)
(b #a)
" rake) (17)
(18)
(c5#a,b)
N -
”kckd) - (l’ (h0+ Z Skc)l>’ (19)
=1
(c #a,b)
(20)
e=1
(c #a,b)
(21)

preted as the polarization energy of Spin Orbital &, in
determinant K, &., the (external) pair correlation
energy for (k. ks) in Ag, and &, the semi-internal
correlation energy for (k,, kw; m) in Ag. The contri-
bution® of each & to the correlation energy is weighted
by the square of the coefficient of Ag.

In any specific problem, the nature of the significant
‘““diagonal” two-determinant terms and cross-corre-
lation terms depends so strongly on the atomic or
molecular state that it is not worthwhile to write down
genera] expressions for all the possible terms.

An example’ of a ‘““diagonal” term arising from two
different determinants is provided by LS carbon. Con-
sider only the (15)2(25)2(2p)? configuration. Then s,
will be involved in the contribution:

(22)

This same configuration provides a clear example of a significant (i; kI)—*“cross-correlation” term:

L (20:)% (29,)*]=2(B(2p.)*% g1aflzp,y1)+2(B(28,)?, gushhap,y?)

+2{dapyr, {B°(1)+10(2) + gt

Zk: [8e(1) +8e(2) J—n1@pat} Bapyr).  (23)

(k =1scx,1883,2s0x,288)

Significant [ fXf] cross-correlation terms for lithium are included in Eq. (64).

¢ When ¢éarar is approximated by Eq. (17) of I, some simplification of Eqs. (16)-(21) occurs because the orbitals are eigen-

functions of a one-electron Hamiltonian.

7 Clearly, the term (22) could and should be included in €2y (by changing the definition of n(:s?). All the “diagonal” two-
determinant terms could be included in diagonal energies. But since we have not written out all these terms in complete gener-
ality to help ensure that they will not be overlooked we have indicated (*‘diagonal” two-determinant terms) separately.
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Energy with x;/

The unlinked clusters affect the energy in two ways: Each term in E, is multiplied by a factor which partially
cancels the normalization denominator, and new integrals involving A° and g,;, not present in Eg4, appear in the
numerator. These new integrals are presumably small and are not discussed here. (For a discussion of these inte-
grals in the closed-shell case, see Ref. 3.) With x4, the variational energy becomes [cf. Eq. (15)]

E'4= Egrur+ (D)2, Y CxCr{2{Ax, Hx 1)+ (X'x, (H— Ecrur)x't)} (24)
K L
N M
= Eorart 2 | Cx |* { 2. &.PED X/ D'+ > Y ErimDFrmn/ D'+ D, E D/ D'}
K a=1 1<a<bsN (m;;é)) 1ga<b<1v
-+ (“diagonal” two-determinant terms)+ (significant “cross-correlation” terms)-+(R’/D’), (25)
where
D'=1+(x"a, X'a), (26)
DiE=1+ X, (@, % )+0({d, 2:5)), (27
1<h<e<N
(b,c #a)
DKkaks m= 1+ Z <aK okay % kckd>+ Z <ﬁKIccm; ﬂchm>+O(<“m u) )7 (28)
1<e<d<N
{c.d #a,b) (e #G:b)
N . M )
Dry=1+ > (Ju®K fi @Byt 30 30 Fabam Frkam) T 2 (ke Bohkr)
=1 1<e<d<N  m=1 1<e<degN
(ca,b} {e.d #ab) m=(K) {e.d #a,b)
+0[ (correlation functions)*]. (29)

Note that for a given correlation process DX may be » Thus each correlation process contributes to E'q an
DX, so that in addition to the renormalization effects, average energy weighted by the fractional occupation

the & and & are given unequal weights. of its spin orbitals in ¢grar:
. . M
Average Correlation Energies E's= Ecpur+ Zps[ék(‘“)]"
k=1

Average correlation energies defined below are useful
for physical interpretations, a semiempirical theory,

b4
and comparison of correlation effects from one system + X Doumleumt+ 2 plEd
to the next. Denote the fractional occupancy of Spin ISh<ILM m=1 ISk<ISM
Orbital & by pz, of the pair (k1) by pw, and of the (m=kD)
[pair (k)-hole m] by prim <+ (“diagonal” two-determinant terms)
o= Z | Ck 2 (30) + (significant “cross-correlation” terms)
I3
(kinK) +R'/D'. (36)
pm= 2 |Gl (31) E/ in the Closed-Shell Limit
(.l in K; m not in K) For a closed-shell state, ¢orur is just the single
- determinantal ¢uw E(}RHF—EHF the fif and fys. vanish,
= 2, 32 : ’
Pet 2 |Gkl (32) there are no significant cross-correlation or two-deter-
(k! in K) minant terms, px;=1, and E’g will become
Then the average correlation energies are defined by E's=Eup+ > @Du/D'+R'/D'. 37N
k<t
&GPV V= 1 2z (MEDK/TY
L&® = ; | Cu [ & 25D/, (33) This equation has the same form as the analogous £,

(k in K) of the closed-shell theory, [Eq. (49) of Ref. 3]. Finally,

- — 9K, ] ’ it is easy to verify that Eq. (20) for &; becomes identical
Ceetm ] =pktim Z | Cx [ &tmDRiim/ D', (34) with the closed shell &; [Eq. (39b) of Ref. 37.

(ki in X; m not in K) IV. SYMMETRY CONSIDERATIONS

- L —1 2z 7z .
(el =pu ; | Ci & Du/ D" (35) For the approximate correlation wavefunction x's to
(kdin K) have the same symmetry properties (specified in atoms
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by parity and the angular-momentum quantum num-
bers, in molecules by spin and the irreducible repre-
sentation of the spatial symmetry group) as the exact
wavefunction ¢, certain symmetry relationships among
the correlation functions must be satisfied. Symmetry
relationships for closed-shell correlation functions have
been discussed briefly.#5:8® To discuss symmetry prop-
erties in detail will require a separate paper,” so here
we only state a few of the results.

A symmetry operation R takes Spin Orbital j into a
linear combination of spin orbitals of the same subshell.
Denote by A the direct product of the spin irreducible
representation with the spatial irreducible representa-
tion of the appropriate symmetry groups, which corre-
sponds to the subshell of j. Denote by D™ (R) the
matrices of the representation. Then

R|j)=2.D™(R);|1) (38)

(4 runs over all spin orbitals in the A subshell).

The symmetry properties of the /™% and kauk» m
are independent of the #;;, and they are found in a
straightforward manner by the usual vector-coupling
methods. In general, ™% and f,PL are related when
K and L correspond to the same configuration, and %
and / to the same subshell. The fi®X and f%,, kyym TNAY
also be related to each other (see Sec. VII for examples).
It does not seem possible to state the symmetry rela-
tions among the f’s directly in terms of the (k) and
(kakb; m) .

The pair functions arising from the same configura-
tion in ¢grur and the same pair of subshells transform
according to the same law as the (antisymmetrized)
pairs of spin orbitals they replace. Let A denote the
subshell of 7, u the subshell of %, and let / run over
the A subshell, # the p subshell. Let the parentage
superscript K denote the configuration (rather than
the determinant). Then

== Z(»Z(m DM (R) ;D (R) mtinX,
H m

(for A=), (39)
= ZmZ(x) {D®(R) 1D (R) i
: { <1:;
—~D®(R) ;DM (R) 4} X,  (forA=p). (40)

For x’s, Egs. (39) and (40) hold without the parentage
superscript K.

Under the above conditions, x’z (or x’s) has the same
symmetry properties as the exact ¢.°

8. Sinanogli, Proc. Roy. Soc. {(London) A260, 379 (1961).

$H. B, Levine, M. Geller, and H. S. Taylor, J. Chem. Phys.
40, 595 (1964).

10 H, J, Silverstone and O. Sinanoglu (to be published).
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V. EQUATIONS FOR CALCULATING THE ONE-
AND TWO-ELECTRON CORRELATION
FUNCTIONS

In this section we discuss how to calculate x’z and
E’; variationally. The direct wvariational principle
approach—to make the entire E’s [Eq. (25)] sta-
tionary with respect to variations of the fi™PK, &y,
and #4F—is too difficult to apply because of the
large number of small, difficult integrals coupling the
various correlation functions. We use the variation—
perturbation approach,’ where one first minimizes a
large portion of E'q, chosen to eliminate the negligible
coupling terms (but not necessarily all the coupling
terms).

If all the coupling terms in E’; were negligible, then
each correlation function could be determined inde-
pendently. Coupling terms are usually quite small for
closed-shell states, but for open shells, cross-correlation
coupling terms are significant [e.g., Egs. (23) and
(64)]. The unlinked cluster quotients, DX/D’ [Egs.
(25)-(29) ], also couple the correlation functions.

The D;#/D' coupling can be avoided by approxi-
mating D;X/D' with a function depending only on
{8:%, #:;5). A general form for this “unlinked cluster
cancellation” is

DiJK/DINEA v‘fK (d,, H aﬁK >TI (41)

The constants 4, and B;X should be chosen so that
(41) represents otk the numerical value of Dy%/D’
and its functional dependence on (@, #,5). Similarly,
for DE/D and DE,;.,,/D’, we write:

Dy /D"Q"/[Ak B <fk(P)K’fk(P)K>]~1
DKkl;m/D!%[AKkE;m'f'BKkl;m(ﬁzkl;m,kal;m>]_I-

For closed-shell states® A;~B;=1. For open-shell
states, we make the following general approximations:

AFAfE

(42)
(43)

Keum™1; BiF 2 pi; BiE~pr; BEkim™prtm,

DkK/D'NI:l-I—pk(fk(P)K, Fe®RY T, (44)
DKkl‘m/D!%[l_}”pkl'm(fk l;m,fxfcl;m>]dly (45)
D,,K/D”"[l—l-p,,(ﬂ,, 7'ﬂiJK>]—1- (46}

The errors in the approximate 4’s are of the order of
correlation function lengths squared. In specific appli-
cations one might wish to obtain more accurate esti-
mates of the 4’s and B’s either numerically or by
using symmetry. [ See Eq. (63) for an example.]

The correlation functions, when calculated varia-
tionally, do not automatically satisfy the symmetry
relationships [e.g., Egs. (39) and (40)] (except
in the case of perturbation theory).!® That out of
N(N~1)/2 pairs, there are only about N distinct,
independent ones, many differing from each other only
by M., Ms or by orientation was discussed previ-
ously?4® Thus, the symmetry-related -correlation
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functions must naturally be set equal throughout
variations or be varied simultaneously.

To leave in the portion of E’s to be minimized, the
significant “cross correlations” (a nonclosed-shell phe-
nomenon) which couple correlation functions already
related by symmetry, clearly does not add much com-
putational difficulty. In the first-order case () varia-
tion of pairs with or without cross terms gives the
same result. Thus, one may obtain separate variational

Sl 2222 | Cx [ &aPE(1+pu( fulPX, filPE))
K k

(sym. rel. set)
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equations for sets of symmetry-related correlation
functions by using the approximations (44)-(46) and
neglecting cross terms of symmetry-unrelated functions
at first. From the functions obtained, one can then
calculate the remaining cross-term matrix elements to
see if they are really small. If not, variation of the larger
portion, involving these terms too, will be needed.

The variational equations for the separate sets of
symmetry-related functions are

+ ZZZ | C |2 st (14 prtim{ PErtimy Pt ) "1+ ZZ CrCre[ XX 1]} =0, (47)

k<l m
(sym. rel. set)

Soym i Z D> | Ck |2 Fptim (14 prtim Pty fFatm)) - E E CxCre[ fEX L]} =0,

k<l m
(sym rel. set)

Seym{

k<l
(sym. rel. set)

Z 2 | Cx P e (1 praltad, #5)) 4 Z 2. CxCi(if; k) }=0.

(48)
(sym rel. set)

(49)

(sym. rel. set)

The summations in each case run over a set of correlation functions interrelated by symmetry (symmetry-related
set) The 8¢ym indicates that symmetry relations must hold durlng the variation. Note that some fk, .m are related
to f; [Eq. (47)] while others are not [Eq. (48)]. The &[ f&X ] and (if; k) stand for significant cross-correla-
tion terms. “Diagonal’” two-determinant terms are meant to be included implicitly in the diagonal or cross-corre-
lation terms. (For the relation of variational equations to the corresponding differential equations, and for a
discussion of other possible choices of the portion of E to be minimized in the closed-shell case, see Refs. 4 and 5.)

Anonymous Parentage

In the x', case [Eq. (9)] we can easily find equations similar to Eqs. (47)—(49). First define the average corre-

lation energies [c.f. Eqs. (33)-(35) ] without unlinked cluster effects. For instance,

[a®Ju=pit

2 [CrPamx
K

(50)

(kin K)

and similarly for [&gm o and [&:Ja. Then the corresponding variational equations appropriate for x/, are,e.g.,

By ; pel&® T (1o fi®, fi® )

(sym. rel. set}

+ > prtml &tim e (1 0kt Frtems Frtom)) 1 EZ CxCreé[ fXf1)

k<l m
(sym. rel. set)

and similarly for [&,]u, etc. Note that cross-correlation
terms in Eq. (51) are more inclusive than those in
Eq. (47), because correlation functions from separate
configurations may now be related by symmetry.

It is interesting to note that the [€]s, represent
energies for the correlation processes occurring in
average Coulomb and exchange fields. For instance, let

N
Vimpet 20 [ Cx 2 20 S
K a=1

(¢ in K)

(52)

(ka k)

=0 (51)
(sym rel. set)
and
m=p! Y | Cx |2 ni&. (53)
K
*in K)
Then,
[6® =20k, G-+ VORPY+ (D, (04 Vimm)fi®).
(54)

Again analogous equations hold for the other [€]a.
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Comments on Nonempirical Calculations

The basic variation—perturbation equations for cal-
culating x’q are Egs. (47)-(49), and for x,” are Eq.
(51) and its equivalent. A 4; (or f) is obtained inde-
pendently of other #’s (or f’s) to which the #,; (or f)
is not related by symmetry. To keep the correct sym-
metry relations in a nonempirical calculation, express
the related correlation functions in terms of “‘irreduc-
ible” correlation functions,*!® and then vary the indi-
vidual irreducible components. To varying approxi-
mations, other types of pairs may be varied too (for
closed-shell case see Ref. 4).

Use of Egs. (47)-(49) or (51), etc., without any
cross terms may be sometimes justifiable numerically
as mentioned above. In perturbation theory [I, Egs.
(52)—(58) ] neglect or retention of cross terms leads to
identical results.

The fX# and other cross-correlation terms coupling
symmetry-unrelated functions were neglected to ob-
tain decoupled equations. If in a specific problem some
of these terms are large, one may have to solve coupled
equations for the symmetry-unrelated functions.

We also made the unlinked cluster cancellation
approximations [Eqs. (41)-(46)] to decouple the
correlation functions. When the correlation functions
have been calculated, one can make better estimates
of the A’s and B’s. These more accurate values are
probably more important in calculating E’; than in
calculating the correlation functions themselves.

When calculating £y, all significant cross-correlation
terms should be included, even though some were not
included in the part of E’; minimized. To obtain an
upper bound to the exact E, the remainder terms
[R'/D’, Eq. (36) ] must also be estimated.

VI. SEMIEMPIRICAL CORRELATION THEORY

Equation (36) forms a theoretical basis for a semi-
empirical correlation theory. The average pair corre-
lation energies [&:]' are of the dynamical type,'!:12
vary slowly as the system changes, and may be eval-
uated empirically. The significant E’(ij ; kD) “cross
correlations” can be found empirically using symmetry.
We expect the [&®7F, [&un], and & fX}f] cross-
correlation terms to be quite sensitive to symmetry
and exclusion effects and not available for empirical
evaluation. The ¢arur, EGrur, Pk, Priim, Pr1, the polari-
zation and semi-internal correlation energies, and the
&[ FXf] cross-correlation terms must be obtained non-
empirically. If the theory is to be based on a Roothaan-
type RHF, the E;n Py Egrar— Egur (which is essen-
tially the near-degeneracy-type nondynamical correla-
tion energy) is extremely sensitive to exclusion
effects?-12 and must be obtained nonempirically.

( uD, F. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677
1964).

12 V McKoy and O. Smanoglu, in Modern Quantum Chemistry—
Istanbul Lectures, O. Sinanoglu, Ed. (Academic Press Inc., New
York, 1965), Pt. IL

3615

A workable semiempirical correlation energy pro-
cedure would be:

(1) Calculate ¢rur by Roothaan’s procedure. (See I,
Refs. [13] and [14].)

(2) Estimate ¢grur and Ei**F by near-degeneracy-
type CI [Eq. (17) of I].

(3) Calculate [&®7, [&um], and @[ fXf] terms
nonempirically [Egs. (54), (48), (47), (34), and
(33)1

(4) Evaluate empirically the remaining pair terms
according to the formula

> pril&s )+ {significant cross-correlation terms}.
k<l

VII. EXAMPLES

The following examples illustrate some aspects of
the nonclosed-shell many-electron theory. This theory
has also been applied to atomic valence state energy
calculations on C, N, and O for use in the =-electron
treatment of molecules such as pyridine, furane, etc.’®
(See also the appendix of that paper,”® for general
Hartree-Fock and correlation theory of valence states).

Lithium
Orbital Wavefunction
dorur (25-Li) = ¢rur=Q{ (1sa) (1s8) (2sa) }.  (55)

The spin orbitals are eigenfunctions of a one-electron
Hamiltonian with the Roothaan SCF potential Vg
given by

Ve(Li) =21~ K1s— 3 (2T 2s— Ka,)
+ (| 1s){1s | +3 | 2s)(2s ) (25— K3,)
+ (22— Ks) ([ 15)(1s | +3 | 25125 ), (56)

where the J; and K; are (spinless) Coulomb and
exchange operators.

Correlation Wavefunction
Since ¢qarar is a single determinant, x'a=x",. Explic-
itly, x'a is
X'4=C{ ( Fual®) (158) (250) + 2 Hraa P thsp 200
+ (15@) ( Fus®) (250) +2 1P (X2) ftae 200 (%1, Xs)
+ (15a) (258) ( Frap 2005208) 2100208 Frop 2000208
+ 274243250} + 273 (150r) Brap 20

+23[158(X2) 110,202 (X1, X5) } - (57)

Symmetry Relationships

Equations (58) and (59) express. the spin-polarizing
nature of the fi,(®. Equation (60) is a consequence of

13 M, K. Orloff and Q. Sinanoglu, J. Chem. Phys. 43, 49 (1965).
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symmetry and Eqgs. (58) and (59). Write

Frea®=Ffa. (58)

Then . .
fleﬁ(P) = —fB, (59)
flsﬁ,%a;%ﬂ= - Zfa- (60)

For the pair functions, it is easy to show from Eqgs.
(39) and (40), or from more direct considerations,5:89
that #,t is a 1S function, #ia 9. and #ys.0s are two
components of a 35, the third component contributing
equally to B1,0,2:8 and #ies,2:4, and that the remaining 1S
parts of fliee 065 and fi,p 2., differ only in sign.

Variational Equation for f

With Egs. (58)-(60), Eq. (47) becomes an equation
for f. We write this equation explicitly. Define

7= {(1s), B°(15) )+ 10+ T1s.20— 3K1s,2s  (61)
and

AV=J1,— K1 +Jout3Ks— V. (62)
Then, using Egs. (58)-(60) to make a better unlinked

SILVERSTONE AND O.
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cluster cancellation approximation than Egs. (44) and
(49),

Diso/D'RDup/ 'S D e/ D'R[146{ £, /Y. (63)

We obtain after some manipulation the variational
equation for f:

Seym | (Fraa P F-E1sp P €148, 200;208
A+ F1ea® X Fra® T+ Frsa® X Frep sea208]
& fros® X frsp asaizen]) /(16 F, I }
=60em{[2(], (—3Ku) (15))
+{f, 0+ VataV—ni)]

X (14+6(f, M1} = (64)

Carbon

The 1S-state of the (1s5)2(2s)2(2p)? configuration of
carbon has symmetry orbital average polarizations and
is also a case where the anonymous parentage approxi-
mation cannot be used. The ¢grur has the form

(2p:) (2pa8) + 2pyer) (298} + (2p.x) (29.8)

darEF=Q {C;(lsa) (1s8) (25a) (258)

+ [Cz(lsa)(1SB)+C3(2sa)(286)+C4

V3

(1sa) (25B) + (25ax) (ISﬁ)]
V2

v [ (2psx) (2p:8) (2pye) (2£48) + (2pa0) (2:8) (2px) (20:8) + 2pux) (2p8) (2p2) (ZP;B)]

Let dm, (m=2,1,0, —1
function ¢(d) mixes directly with ¢grar.

#(d) =s~*a{(1sa> (ISB)[(ZS) (d_s) (264) (284) — (25) (da)

=+ (25) (do)

2(2p.) (2p.) —

V3

+Ca(2p:0) (20:8) (2y0) (25,8) (2.2 <2m>}. (65)

, —2), denote five one-electron functions corresponding to d symmetry (/=2). The

(2p+) (2p0)+ (20) (2p4)
3

(zpz) (ZPz) — (va) (Zﬁu)

(2p-) (2p0) + (20) (2p-)

(6)*
o8 —Ba

—(25)(dy)

From ¢(d) there are contributions to fo,s® given (sym-
bolically) by Egs. (67)-(69). [X denotes (1s)2(2s)?
(2p.)2, ¥ denotes (15)2(25)2(2p,)2, and Z denotes
(15)%(25)%(2p.)*]

FaogPX=[— (1/20)¥do+ (3/40)} (dy+d_) 18, (67)
Foug®¥=[— (1/20)¥ds— (3/40)¥(da+d_2) 18, (68)
Fes®Z=(1/5)%. (69)

Note first that these symmetry polarizations ‘“add
d character to the (2s8) spin orbital”, and second

V2

+(29) () (2) (29 >] aﬁ} (66)

that the average fas® vanishes, making the anony-
mous parentage approximation inappropriate. Note
also that Eqs. (67)—-(69) may be used to simplify the
energy expressions.

Ethylene Positive Ion

The HF ¢, for the ground state of the ethylene
positive ion (CoHy*) can be written

PGREF= OREF

= Q{olodoodosiodorm}.

(70)
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The oy, (i=1, 2, ++-, 7), are the seven HF ¢ orbitals,
and m; is the HF orbital of the x electron. There is no
significant (first-order) internal correlation. Spin polar-
izing f®’s, and f;.’s arise from excitations (s—g
where g is an arbitrary excited orbital) of the type

e imr—gom (efat-Boa—2aaB), (71)
P =ga, (72)
Jut D= — g8, (73)
Joupmioims=—2g8, (74)

7
AV, = Z (Sﬁa"' Sf’iﬂ) +Sﬂa— Sw —Va. (75)

=1

These f,,® are very important in electron spin reso-
nance, since they are responsible for the nonzero spin
densities at the protons. The pair functions 4,2, %,
(for all spin combinations), and 4,,, (for all spin
combinations), are one-electron orthogonal to o., .0,
(4=1, 2, -+, 7), and to ma and mB. Excitations of
the type olm—0ogm (afa—Baa) should not contribute

3617

significantly to f,,® because of the extremum property
of ¢orur-
VIII. SUMMARY

We obtained a variational nonclosed-shell many-
electron wavefunction by making the first-order corre-
lation functions “exact to all orders” and by including
unlinked clusters. The variational energy contains
energies for each correlation process (orbital average
polarizations, semi-internal correlations, and external
pair correlations), weighted by the fractional occupancy
of the spin orbitals, and significant cross-correlation
energies not found in closed-shell states. By neglecting
terms coupling correlation functions not related by
symmetry, we obtain independent variational equations
for sets of symmetry-related functions. The members
of each set, however, are coupled to one another (at
least by symmetry). The pair correlation energies and
cross-correlation terms may be obtained semiempiri-
cally, but the other significant correlation terms are
quite sensitive to symmetry and exclusion effects and
must be calculated nonempirically.
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Kinetic Isotope Effects in the Reaction between Atomic Chlorine and Molecular Hydrogen.
Tunnel Coefficients of the Hydrogen Atom through an Asymmetric Potential Barrier

AviGDoR PERskY AND Frizz S. KLEIN

Isotope Department, Weizmann Institute of Science, Rehovoth, Israel
(Received 24 September 1965)

Kinetic isotope effects for the reactions between atomic chlorine and molecular hydrogen have been
measured in the range of —30° to 4-70°C. The following expressions were obtained:

Reymr= (1.27£0.03) exp[(797-:14) /RT],
Ry, = (1.4420.06) exp[ (1128+:17) /RT],
Ruypr=1.53¢ exp(1422/RT),
Rﬂgn‘z = 1.545 €xp (1693/R T) .

The isotope effect of HD,

Rypymp = (1.2440.03) exp[(490-£6) /RT7],

has been redetermined and found to agree with previous measurements.

Theoretical calculations of these isotope effects, using (1) a Sato model, (2) a generalized Sato model,
and (3) the Johnston-Parr method, were made to compare the calculated effects with experimental results.

Tunnel corrections were applied using (1) an asymmetric Eckart barrier, or (2) the Johnston-Rapp
method with an asymmetric barrier. Best agreement (within 15%) of calculated values with experiment
was obtained for a generalized Sato model including Johnston-Rapp tunnel corrections. Empirical sets of
four force constants describing the transition state H-H-Cl are also given. These are used to calculate
isotope effects which are in excellent agreement with experimental values.

NE of the strongest experimental supports for the
transition-state theory! has been coming forth in
recent years from precision measurements of kinetic
isotope effects? in elementary reactions,* ¢ while the

1 8. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate
Processes (McGraw-Hill Book Company, Inc., New York, 1941).
(lfggé)Bigeleisen and M. Wolfsberg, Advan. Chem. Phys. 1, 15

3 J. Bigeleisen, F. S. Klein, R. E. Weston, and M. Wolsfberg,
J. Chem. Phys. 30, 1340 (1959).

4J. H. Sullivan, J. Chem. Phys. 39, 3001 (1963).

most successful theoretical approach to reactions
between atoms or radicals and simple molecules has
been given by the quantum-chemical concept of the
transition state.”?

8 R. B. Timmons and_R. E. Weston, J. Chem. Phys. 41, 1654
(1964).

8 H. Carmichael and H. S. Johnston, J. Chem. Phys. 41, 1975
(1964).

71. Shavitt, J. Chem. Phys. 31, 1359 (1959).

8 R. E. Weston, J. Chem. Phys. 31, 892 (1959).

? R. N. Porter’and M, Karplus, J. Chem. Phys. 40, 1105 (1964).
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