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ANALYTICAL EVALUATION OF THREE- AND FOUR-CENTER
INTEGRALS OF v~ WITH SLATER-TYPE ORBITALS*

By HARRIs J. SILVERSTONE
DEPARTMENT OF CHEMISTRY, JOHNS HOPKINS UNIVERSITY, BALTIMORE
Communicated by Paul H. Emmellt, May 11, 1967

Three- and four-center integrals of rip~* with Slater-type orbitals (STO) have
long been the “bottlenecks of molecular quantum mechanics.” Evaluation of
multicenter integrals is usually carried out, after some analytical manipulations,
by numerical integrations,'—* except in the special case of linear triatomic mole-
cules. In this communication, a technique is sketched for the analytical evaluation
of arbitrary three- and four-center integrals, and a particular three-center integral
is evaluated as an example.

The method is beguilingly simple. The first key ingredient is the Fourier trans-
form convolution theorem,®—8 which automatically reduces the six-dimensional
integration to a three-dimensional one. The second key ingredient is the expan-
sion? % ¢ of an STO on one center about another center, which reduces the Fourier
transform of a two-center charge distribution to the sum of Fourier transforms of
one-center distributions. The technique is successful because (1) the angular inte-
gration in the convolution integral is over spherical harmonics—therefore easy—
and (2) the radial integration can be carried out by contour integration and the
residue theorem. !

For an illustration, first consider the Fourier transform of the two-center product
of two 1s orbitals,

Gk) = (NN~ f dv exp(ik-1) 15,(r) 1s,(r — ®), 1)
= (@dm) ' fdvexp(k-r — &r — & — ®|). @)
Evaluate (2) after expanding exp(— g“cl r — (Rl) about the origin to obtain
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In equations (2) and (3), N, = 2¢,2, (k,0:,¢x) and (®,04,905) denote the spherical

coordinates of k and ®, £, is an exponential-type integral,!' 7,(x) = [T t~" exp
(—at)dt, and £, is the “entire” part of I, £,(x) = I,&) + (—z)" 'Inz/(n — 1),
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The 9, and &X; are essentially'? modified spherical Bessel functions: d,(x) = =«
(x7¥d/dx)'x= sinh z; K, (x) = (—2x)'(x~'d/dx)x~" exp(—x).

Note particularly that the only singularities of G(k) are poles and logarithmic
branch points at k = *4({ + o).

Next, we use G(k) in the simplest example of a three-(noncolinear)-center inte-
gral,

IEfdi)lfdvg 18,1(1'1) lsa(rl) 7'12_1 lsb(r2 — R) 180(1'2 — R — (R,). (4)
Expressed as a convolution integral,®—%- 1 we obtain
I = 1/,a=52N 2NN Jd*kF (k)G (k)2 exp(ik-R), 5)

where F(k) = (4n)=12 fdv exp(ik-r — 2¢) = (4w)~Y2 27 (ik)~[(Z — ik)~2 —
(Z + k)?] (see eq. (13) of ref. 8), and where Z = 2¢,. Denote the spherical co-
ordinates of R by (R,0z,6z), let cos® = R-®/(R®), and let P; denote the Legendre
polynomial of order I. Carrying out the integration of equation (5) for the case R >
®, we obtain

I = N2N,N, Y 2L+ 1)(—1)'P(cosO)
1=0
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Horrendous as it may be, the analytical formula (eqgs. (6)—(8)) has much to recom-
mend it: (1) Computational accuracy with analytical formulas is easier to assess
than with numerical integrations. (2) The internuclear angular coordinates enter
in a transparent manner. (3) The functions d; and &; are characteristic of the two-
center charge distribution and are independent of the integral in which they appear.
(4) Convenient numerical methods exist!* for evaluating the classical functions
95, K;, and Eyy, for all ranges of their arguments and parameters. (5) Behavior for
large R is easy to estimate.

More complicated three- and four-center integrals work out similarly, but with
considerably more bookkeeping. In a subsequent paper, detailed derivations and
computationally convenient formulas will be given for the general r,~! integrals
involving arbitrary STO’s.
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