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Analytical Evaluation of Multicenter Integrals of r,,~! with Slater-Type Atomic Orbitals
IV. Four-Center Integrals by Taylor Series Method*

KeExneTH G. Kayt ANp HARRIS J. SILVERSTONE
Department of Chemisiry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 23 December 1968)

The four-center integral of 71;™1 with Slater-type atomic orbitals is evaluated analytically. The result,
obtained after expanding 7. in a Taylor series, is for general values of the », [, m, and { parameters of
the Slater-type orbitals and of the internuclear distance vectors, ®:, ®, and R.

INTRODUCTION

Analytical formulas are derived for the four-center integral of 7,57 with Slater-type atomic orbitals. The formulas
are valid for general values of the quantum numbers, orbital exponents, and internuclear distances and angles.
The basic techniques used in this paper are contour integration and the Taylor series expansion of 757,

This paper represents a departure from the Fourier-transform convolution theorem approach of Papers I-I11,1-3
an approach we shall return to in a subsequent paper.* The 715! Taylor series approach (which is closely related
to the bipolar expansion method®) has been developed principally by Roberts, who obtained the four-center
integral as an infinite sum of one-dimensional integrals,® whose integrands in turn were products of two-center
overlap integrals. Roberts advocated® evaluating these one-dimensional integrals numerically. We resolve the
one-dimensional integrals analytically, and the results are somewhat easier to obtain than (although somewhat
different from) the results we have obtained* with the Fourier-transform convolution method. However, it is not

certain which method yields the more useful result, because the Taylor-series approach contains more infinite
summations.

FORMULATION IN TERMS OF OVERLAP INTEGRALS

Consider the four-center integral
Tnctomete natomat iinalamata my lymsts (B1, B, R) = (NoNoNN )1 _/ vy ./ @Vars™!

X[¥*netomete (1) ¥natamars (fo— ®2) T [ ¥ natomate (=R tymgs (n—R—R1) ] (1)

=Iﬂd;ab(m'1y (RZ’ R): (2)
where the Slater-type orbitals are defined by
Ynimg (F) =Nrtexp(—¢r) Vi (0, ¢). (3)

The » and [ are positive integers which satisfy
n2l+1, 4)
and the Y™ is a spherical harmonic.

Following Roberts,*™ we obtain I.q;s as a sum of Laplace transforms of products of two-center overlap intergals.
Define

@1=I'1—R. (5)
Then® |
rp = | 91+R—1'21 (6)
o o t+k I ik L
=222 2 ;} ZLca, m, L, M3k, j, i, R) Y (0,0, $01) Vi (82, 62)
i=0 j=0 k=0 =0 m=—1 L=0 M=—
d 2042542k peo
X117 k1214 2+ 2k) N iteryitH — — du exp[— (pr+ra+R)ul, (7)
7 R!( j IR
0

2 H. J. Silverstone and K. G. Kay, J. Chem. Phys. 48, 4108
* Supported in part by a National Science Foundation Grant.  (1968), hereafter referred to as III. .
{ National Aeronautics and Space Administration Predoctoral 4H. J. Silverstone and K. G. Kay (to be published).

Trainee. 5 (a) See, for instance: B. C. Carlson and G. S. Rushbrooke,
1H. J. Silverstone, J. Chem. Phys. 48, 4098 (1968), hereafter = Proc. Cambridge Phil. Soc. 46, 626 (1950); R. J. Buehler and
referred to as 1. J. O. Hirschfelder, Phys. Rev. 83, 628 (1951); 85, 149 (1952);
2 H. J. Silverstone, J. Chem. Phys. 48, 4106 (1968), hereafter  and R. A. Sack, J. Math. Phys. 5, 260 (1964); (b) P. J. Roberts,
referred to as II. J. Chem. Phys, 47, 2981 (1967).
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where
(ZN)!1=2%N |, (8)
(N—-D 1= (2N)I/(2N) I, (9

and where ¢(Im, LM ; kji; R), which is given by Roberts,’ is
k  min(j, L4+1) min(d, 411 1
c(bm, LM ; kji; R) = R+i(4m) 2 (— )M >
=0 l9=|L~1|
« 2oAE(G1 )2 (— 1) B[ (2l 1) (2s4-1) 2
(b—1) e bt 1) 1= 1) 1l 1) i) (i bt 1)
Xc"(L, — M; himy) c'3(Im; oma) Vi, =71 (0, dr) Vi~ * (0g, ¢r) .
The (R, 0z, ¢r), etc., denote the spherical coordinates of R, etc. With Eq. (7) substituted into Eq. (1), and with
the use of the Condon—Shortley coefficients,’

=] l=U]| na=-1U

(10)

A 47 \V¥2 ¥ ok
Ylamy; Im) = dQY 7Y ey e, 11
M (lymg; Im) <2A1+1) / ™Y ! (11)
the 7.4,. becomes
Ll Ltl,
Law= 2, 2. 2. 2 c(lm, LM; kji; R) [31j1k!( 26+ 2j+2k) lldn ]
7k ImIM Ar=\I—lo| A=|L—lc|
d \22i+2k
X[(2A:141) (2A:+1) T2cM(Lima; bn) 22 (Iamg; L, — M) (— l)M(— d—R) g, (12)
where
Leasap= f du €xp(—Ru) Su itk My mamm Latuins Limsts (BRL) S*act itk Ao met M § ot nalamata (Re), (13)
0
and where the S denotes the overlap integral
Snllvmh;nalzmﬁz(a)z (Nl Tﬁ)—l f dV‘I’*nlllmlh(r)‘pnzlzmzi’z(r-'a)- (14)
Equations (12) and (13) are essentially the results of Roberts.?
EVALUATION
To resolve I'cq;a6 [Eq. (13)] we first use a convenient expression for the overlap integral®:
d \m—h d \re—l: Ikl
Sostimigsinalamara (®) = (—1) 11+1.,,.1/2(_ __) <_ —) Do (D2 Lgm; Limy) V™1 (g, o)
as dts A= Ll
a\" d \"
x| (=05 ) e 0 (5 Y Db (om0
dfl dg'l
WAL d\n
+(= 1)11(5'2—1 _) 5'2““”1567«(?26’\)(?2_1 —“) L) - ((1—5'2)—1:]] . (18)
dg'2 d§-2
The X&) function is?
Ko(y) = (=) y'd/dy) v exp(—y). (16)

6 See Appendix of Ref. 5(b).
“E. U. Condon and G. H. Shortley, The Theory of Atomic

exponential-type integrals E, () are also discussed in this refer-
ence. Note that F;(x) is

Spectra (Cambridge University Press, London, 1935). o (—x)»
8H. J. Silverstone, J. Chem. Phys. 45, 4337 (1966). Equation BEx)=—3 :
(15) above is a more concise form of Eq. (32) of this reference. =1 Punl]

This formula is an essential contribution of the Fourier-transform
convolution method to the Taylor series method.

® The X, is essentially a modified spherical Bessel function of
the third kind [see, e.g., M. Abramowitz and I. A, Stegun (Eds.),
Natl. Bur. Std. (U.S.) Appl. Math, Ser, No. 55 (1964)]. The
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Some properties of the X, E,, and , functions are discussed in
1. See especially Egs. (16), (21)~(29), and (62)~(65). Note that
the left-hand side of Eq. (21) of I should read E,(x). Unfor-
tunately, the ““~”" seems to have broken off during the printing.
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Equation (15), put into Eq. (13), gives

I eio= ( 1)A1+A27r( d )"n+f+k—m< d )na—l»( d )nc+f+k—Az< d )n,,_z,,
cdiab™ (= — o — T - T _— T
dfa a5 dt. aa

Artls Agtly

X A 20 [2A1) (2a+ 1) JH2M (Bms; As, g—m) M (lama; Aoy me+ M)

Ar=| Ar—ln| Ag=|As—1ldl

ith X Y)‘lmb—m‘ﬁm (0(R1, ¢(Rl) Y)\zmd_m"-M*(e(Rm ¢(Rz) I"cd;ﬂb) (17)
wit

I 0= /m du eXp(*Ru)[(—l)’b((s“ +u) ‘-) (¢a +u)“‘“"“Jﬁl[({a-i-u)Gh]((fa-!-u)‘l ) (Catu)?
0
X[ (Cottatu)? (s“b—s“a-u)“]-i-(—l)“‘(s“ §> §'bA‘+"’+IJCM(§'bO’~1)(§b §_> ot
d
X[(§a+u+§b)"‘—(s“a+u—-s”b)”‘:|][ —1)"’((§c+u) ) (feto) Attty T (¢t u) Ry ]
d la
X( (et ) Gt LGarttot 1= (ot RUACHE (728 f) aeHant

X5€x2(§'d(ﬁz)(§'d ?) Sl (Cetutia)t— (§c+“—§d)_l:|]~ (18)

Equation (18) can be resolved by contour integration techniques and the residue theorem. First turn the
integral (18) into a contour integral by the manipulation

w )
/ du exp(-Ru)---=(21ri)—1/ dulog(—u) exp(—Ru)+--. (19)
0

wexp(ie)

[For convenience, we have shifted the integration path to the ray, arg(z) =, where ¢ is a small positive number. ]
With Eq. (19), I .0, [Eq. (18)] breaks naturally into four terms,

I =TV F IO OO, (20)
We discuss J®; the most difficult term, in detail, and then give results for the rest.

I® is defined by

)
IO = (—1)WHa(27§) 1 / du log(—u) exp(—Ru) {A1 | K[ (Cat2)Ri] | b}

coexp(ie)
XL(Eatfotu) ™= (fo—a—u) 7 I A | Bn (Fet o) ®Re] | L} [GetSat o)™ = (Fa—Fe—u) '] (21)

where we have defined
A 3OG®R) | I = (61d/de) AR (§®) (§1d/dE) (22)
to save space.
After suitable manipulation, 7® can be evaluated as a sum of residues. First note that since

Ka(y)~ytexp(—y), as y—eo, (23)
the integrand behaves like
log(—u) exp[— (R+®u+Ga) u Ju a4 (24)

as #— %, Second, note that the only singularities of the integrand of (22), besides the logarithm, are poles' at
u= —¢a+¢ and — ¢4 Third, use the maneuver

log(—u) = B[ — u(R+®u+8) 1— Eaf —u(R+Gu+®s) J— log(R+GRu+Re) —v, (25)

19 What look like possible poles at #=—¢, and —¢, are not really there. See below, Eq. (34), and accompanying discussion.
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where E;(x)® is an exponential-type integral,

Ei(x)= /lw dir! exp(—at), (26)

~xlexp(—x), as x— o, (27)

the v is Euler’s constant, and () is an entire function.? Because the contour in Eq. (21) encloses no singularities
other than log(~u), when Eq. (25) is put into Eq. (21), the contributions of i, log(R+G04+®;), and v vanish.
Because of Egs. (27) and (24), the integrand of the term involving Ey goes like 2%~ for large | |, and the
contour can be closed at « by a circle running clockwise from [ « exp(ie) —ie] to [ « exp(ie) +1e]. The integra-
tion path now surrounds four poles and no branch points, and the integral is immediately evaluated via the residue
theorem: '

IO=(=1)"a((—=1)M{h | Kn (= &®0) | Ar} expl(Sat$3) RIEL (Cat$p) (RH-Cut®o) ]
X{he | Fal (—Fe—GotFe) Qo] [ L} [(—Sa— ot St ba) 7= (Cut b= EetEa) T+ (= DML | Ry (5B) | A
X exp[ (fa— o) RIEAL (§u—$5) (R+Rut®a) J{ Az | Hnel (— ot Tot80) Re] | L} [(—CatSot-bet i)™
— (a8 CetEa) T I (= )22l | Ko (—Fe®a) | Ao} exp[ ($ot-$a) RIE[(§etEa) (RF-Cut®e) ]
XA | B[ (Ca— ot BT | B} L (Cat§o— o §a) = (= SatEot-Eetba) 1]
F (=1l | BKn(Sa®e) | Ae} expL(§e—Fa) RIEL ($o—(a) (R+Gut+Gs) ]
XA | B[ (Go— et @] | BIL(Cat-bo— ot Ea) = (— Lot SobEe—¢a) ). (28)

Similar arguments can be used to evaluate the rest of I'/cq,w. The results are:

[®=(—1)"*{ly | Kny(Fa®e) | Ao} (= 1)M{h | Knn(—$®) | A} expl (Cat83) RIEL (Fat-6o) (RG]
XL(=fa=tsetta) = (= Ca= Gt Eo— ) T I+ (= DMl | Ry (56R) | Ax} expl (Fa—$) R]
XE[ (¥a—¢3) (RH®0) JL(—Eat-CotEotE0) 71— (= bt SoFEe—ta) ™I expl(Getta) RIEL (St Ea) (R ]
XA | B (fa—te— )R] | B} (FatSo—Fe—Ea) 7~ (= FatbotEotb b)) ] — expl (§o—§a) R]
XEL(fe=a) (R+6) J{A1 | aL(FaFet§a) R | BILEatfo—Fetba) = (= fatbot-to—Ca) ), (29)

[O= (=1l | Za(60) | A (=12l ] Kao(—a®e) | Ao} expl (Fet-¢a) RIEL (Cct$a) (R+G2) ]
XLEats— =)= Ca—fo—Fe—a) I (— 1) 22 {ly | By (Fa®e) | Ao} exp[ (§o— o) RIEAL(fe—¢u) (R+) ]
XLGatts=8ct¢a) = (Fa— o FetFa) 71+ expl(fat-§o) RIEL (Cat-$3) (R+-Gs) ]

X {4 | BnL (= Fa— 8 R | L} [(— o= Est-Get-Ca) 7= (Gat-So—Cot £2) T~ expl (fu—§3) K]
XEL(§a={5) (R+®2) J{ A2 | BoaL (—Fatbot8e) Re] | L} [(—Cat-to-betba) 7= (Fa—$o— b E0) ), (30)

[®=(=1)M+8 (] | Bn (§6®0) | Aa} {la | Kno(Fa®e) | Ao} ([(—Fa— st ietEa) i~ (—Fa—GotEo—ta) "]
X expl (fut-£o) RIEL (¢at-6o) R1=[(—Sat§ot ot Ca) 7= (— St St Ce—$a) ™0 expl (fa—3) RIE[ (§a— ) R]
FLGotGo— =) = (Fa—fo—Fe—$a) V] eXP[(§‘c+§'d)R]E1E(§'c+§’d)R]"[(§a+s“d—§'c+§'d>_l
— (Fa—o—fetta) ] expl(Ce— ) RIEL (5~ RT). (31)

DISCUSSION OF APPARENT SINGULARITIES
The four-center integral, as given by Egs. (1), (2), (12), (17), (20), and (28)-(31), has cancelling singularities

when some combinations of {’s vanish. In such cases the formulas must be modified to remove the singularities
before they can be used numerically. '
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It is easily shown that the logarithmic singularities in Ei[({o—{3)G] and Ei[[(fe—¢4) G, where G is a sum of
R’s, are not really there; i.e., Ei[({s—{3)G] can be replaced by

ElE(fa_fb) G]— IOgG’ (32)
and similarly for Ei[ ({o—¢2) Gl '
A different kind of apparent singularity is exhibited by

KnL(—fa—tot ) Re | L} [(—ta—GotCotTa) 71— (Sat o=t 7, (33)

which appears several times in I".4.. [see Eqs. (20) and (28)-(30)7], when {.—§a—{»~0. Set z={.—{o—{b. To
evaluate (33) when 2~0, expand ({==2)~! in a Taylor series in z, then take derivatives with respect to the {’s.
Dropping the subscripts for clarity, we obtain

(413050 | B+ 1— (r—0= =2 35 (5 ) vy ) e omncs

{4

(2m—+20) 1!
(2m) 1!

Possible singularities in (34) can come only from odd terms in the Laurent expansion of zMA+%,(z&). The first
odd term in the expansion of Eq. (34) is

(34)

2(z71d/dz) 2 (2D) 11— R) N[ (2A+1) ] igttatiaae—2i-2, (35)

The ¢*(Im, AM) [Eqs. (11) and (17)] require A+I4X to be even, and A > | A—1 . Thus
AFHAFTZ A1+ | A—1] +1 (36)
>24, (37)

which indicates that Egs. (34) and (35) are not singular at z=0. To summarize, when a combination of three
¢’s appearing in a X, function is near zero, Egs. (28)-(30) must be modified by expanding in a Taylor series with
respect to this combination and keeping the first few terms which survive the differentiations.

A third type of apparent singularity occurs when a sum of four {’s vanishes. Consider, for instance the term in
I® [Egs. (28)],

J=(—1) e, | 55 (—G®) | Ar} expl(fatio) RIEL(Fat$0) (RHGu+R:) ]
X {As | BonL(—Caotie) Re] | la} (—Fa— ot Eet$a) 7 (— 1) wHade{ly | 50, (~{a®e) | Ao}
X exp[(§eta) RIEL (et ta) (RHRui+®) J{ AL | K[ (Ca—Fe—Ea) O] | b} Gt Eo—e—Ea) ™, (38)

when ¢o+{5—{e—a~0. In this situation two distinct poles in the integrand of Eq. (21) have coalesced. The
appropriate part of Eq. (21), equivalent to Eq. (38), is
(©+)

J= (—1)”’+"’(27ri)“‘/ dulog(—u) exp(—Ru) ({Ar | K[ Sat o) Ba] | b} (Cat$ot-u) ™)

ooexp(ie)

X ({As | Kn[(Cctu)®Re] | La} Get-Satu)™). (39)
To evaluate Eq. (39) when {+&—¢c—a~0, use

Gttt )= 3 (Gt fomtemta)* Gart Eota) =, (40)
8=0
then use Eq. (25) and the residue theorem to obtain

d \ArtAetlstlatetl
) ( g-a_|._ g-b+ u) Art+-Aot+-lpt-lats+2

du
X E[—u(R+®+®s) ] exp(—uR) ({A1 | K[ (Catu) ®u] | b} (Sat-$rtu))
X ({As | Bonl (Fotu)®Re] | 2a} (Fat-Sot ) (fatEo—Ce—8a) ). (41)

CONVERGENCE

To grapple with the convergence of Eq. (12) is a difficult matter. The series does not seem to be absolutely
convergent. Provided that all /-type summations are carried out before the 4, 7, £ summations, one can prove in
general that convergence is at least as fast as N1/, where 4, 7, k < N. In the case of a specific two-center nuclear

J=(=1)we 3 [(Art AotlortLa-s+1) !j—‘(
8=0

u=="Fu—1p
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attraction integral treated by the same method, we could prove that the convergence is like N=*. (Note that in
two-center cases 1, §, and % collapse to a single index.) Explicit computations for this specific case confirmed the

N1 convergence.
CONCLUSION

The four-center integral of 7y! with Slater-type orbitals has been evaluated via the Taylor series expansion
of r1;7". The formulas obtained are valid for arbitrary orbital exponents and general values of the #, [, m parameters,
but care must be taken to cancel singularities for certain values of the orbital exponents. The formulas do not
have the multiregion form'~* shown by the integrals when evaluated by the Fourier-transform method. The price
of a single all-region formula is additional infinite summations. Formulas for the case when one or more of the
internuclear distances vanish can be obtained by letting the appropriate R’s go to zero in the four-center formulas
(with due care to cancellation of singularities).
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Infrared Spectra of Carbon Monoxide in Zeolites™

P. J. FEneron anp H. E. Rurarcavat
Department of Chemistry, University College, Dublin 4, Ireland
(Received 15 October 1968)

The infrared spectra of 2C*¥0 and of a mixture of 12C16Q and BC!Q in the zeolite NaA show bands that
have been assigned as R-, Q-, and P-branch maxima of a relatively free rotor. This conclusion depends,
partly, on small but experimentally distinguishable differences in the isotope shift of the bands of a pure
vibrator and those of a vibrotor. The spectrum of carbon monoxide in the zeolite NaX is similar to that
in NaA. However, in CaA, and in CaX, where it is known that CO is more strongly adsorbed than in the
sodium zeolites, the bands have a different structure, corresponding to a strongly hindered rotor.

INTRODUCTION

As environments for spectroscopic studies of the
effect of environment on molecular energy levels, the
zeolites have at least one feature that distinguishes them
from other host materials such as noble-gas matrices and
alkali halide crystals: The cavities in the zeolites that
hold the guest molecules have a diameter which is more
than twice that of small guest molecules such as carbon
monoxide. Thus, one may expect that in zeolites the
energy levels of entrapped small molecules will be sub-
ject to less severe perturbations than those which act
on probe molecules in more familiar matrices for which
the ratio of the molecular diameter to the site diameter
is about one. For such smaller perturbations the result-
ing spectrum would be intermediate in character
between that of the unperturbed molecules as in the gas
phase, and that of the relatively strongly perturbed
molecules as in a noble-gas matrix.! We believe these

* Presented in part at the Joint Annual Meeting of the Chemical
Society, the Institute of Chemistry of Ireland, and the Royal
{xgxgigtute of Chemistry, held at University College, Dublin, April

t To whom correspondence regarding this paper should be sent.

1G. E. Leroi, G. E. Ewing, and G. C. Pimentel, J. Chem. Phys.
40, 2298 (1964).

expectations are realized for carbon monoxide in
sodium zeclite type A and type X. The infrared spec-
trum of carbon monoxide shows a structure that is
plausibly interpreted as arising from transitions between
the energy levels of a vibrotor perturbed by collisions
with the cage walls. In some respects, this structure
resembles more closely that observed for molecules in
the gas phase than it does those of carbon monoxide in
the liquid phase,? or in various solid matrices.!?
Recently, Angell and Schaffer* have reported an
investigation of the spectra of carbon monoxide in
several X-type and Y-type zeolites; for some zeolites
they observed as many as three bands due to the en-
trapped carbon monoxide molecules. They showed
convincingly that, for zeolites containing multicharged
cations, the band at highest frequency is due to mole-
cules adsorbed on those cations, and that the two bands
at lower frequencies appear for all zeolites. Although
the latter two bands resemble unresolved R- and P-
branch maxima, Angell and Schaffer did not assign
them as such because the band intensities did not

2 G. E. Ewing, J. Chem. Phys. 37, 2250 (1962).

# A. G. Maki, J. Chem. Phys. 35, 931 (1961).
( 4C.) L. Angell and P. C. Schaffer, J. Phys, Chem. 70, 1413
1966) .
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