Bipolar Expansion for $r_{12}^n Y_l^m(\theta_{12}, \phi_{12})$

KENNETH G. KAY,† H. DAVID TODD, AND HARRIS J. SILVERSTONE‡
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 14 April 1969)

Explicit formulas for the radial functions $V_{l_1l_2m_1m_2}(\tau_1, \tau_2, R)$ in the bipolar expansion for $r_{12}^n Y_l^m(\theta_2, \phi_2)$,

$$r_{12}^n Y_l^m(\theta_2, \phi_2) = \sum (2\lambda + 1)^{2\lambda}(2\lambda_1 + 1)^{2\lambda_1}(2\mu + 1)^{2\mu}(2\nu + 1)^{2\nu}\frac{\delta^{(\lambda_1 + \lambda_2)}}{(\lambda_1 - \lambda_2)}

\times Y_{l_1l_2m_1m_2}(\theta_1, \phi_1) Y_{l_1l_2m_1m_2}(\theta_2, \phi_2) Y_{l_1l_2m_1m_2}(\theta_3, \phi_3) V_{l_1l_2m_1m_2}(\tau_1, \tau_2, R),$$

where $\tau_2 = \tau_1 - \tau_3$. Then the τ_2 is odd, there are delta-function terms. In this approach the delta-function and the four-region form of the expansion are obtained from a single, unified formula valid in all regions. Recurrence formulas for the $V_{l_1l_2m_1m_2}$ are given.

I. INTRODUCTION

Recently there has been a revival of interest in the bipolar expansion for evaluating two-electron multiconfiguration integrals. The bipolar expansion for r_{12}^{-1} is well known from the work of Carlson and Rushbrooke, Buehler and Hirschfelder, and Rose, and has the general form,

$$r_{12}^{-1} = \sum_{l_1=0}^{n} \sum_{l_2=0}^{n} \sum_{m_1=-l_1}^{l_1} \sum_{m_2=-l_2}^{l_2} \sum_{l_3=0}^{l_1} \sum_{m_3=-l_3}^{l_3} B_{l_1l_2l_3m_1m_2m_3}(\tau_1, \tau_2, \tau_3; \tau, \tau_3, \tau)$$

$$\times Y_{l_1l_2m_1m_2}(\theta_1, \phi_1) Y_{l_3m_3}(\theta_2, \phi_2) Y_{l_3m_3}(\theta_3, \phi_3) V_{l_1l_2m_1m_2}(\tau_1, \tau_2, \tau).$$

Here τ_1 is measured from point A, τ_2 from point B, and τ_3 from A to B (see Fig. 1). The vector τ_{12} is

$$r_{12} = \tau_1 - \tau_2 - \tau_3.$$

Several attempts have been made to generalize Eq. (1) for $r_{12}^n Y_l^m(\theta_2, \phi_2)$. Chiu and Nozawa suggested obtaining a bipolar-type expansion for $r_{12}^{-l-1} Y_l^m(\theta_2, \phi_2)$ by performing two successive Laplace-type expansions, but Sack has pointed out that their formulas do not completely separate angular and radial variables, thus negating the very purpose of the bipolar expansion. Sack derived the bipolar expansion of r_{12}^n, for n an integer ≥ -1, in terms of Appell functions, but was unable to treat completely $n = -2$ or n not an integer. In a later paper, Sack attacked the general $f(\tau) Y_l^m$ problem, obtaining a multiple integral for the radial functions [analogous to B in Eq. (1)] in which the integrand involved the solution of an integral equation. But the method is very cumbersome, and Sack obtained no new explicit formulas for the bipolar expansion. Ruedenberg has reformulated the bipolar expansion by means of the Fourier transform inversion theorem, obtaining an expression for the radial functions as an integral of the product of three spherical Bessel functions and the radial Fourier transform of the function being expanded. Salmon, Birss, and Ruedenberg0 later discussed the r_{12}^{-1} expansion in a novel way, but they have not treated explicitly any other function of r_{12}.

In this paper we derive the bipolar expansion for $r_{12}^n Y_l^m(\theta_2, \phi_2)$. The formulation is essentially the one outlined by Ruedenberg. One advantage of this approach is that the theory of superposition is used to define the Fourier transforms of the $r^n Y_l^m$, which do not exist in the ordinary function sense. The derivation closely resembles the derivation of Laplace-type expansions given in the preceding papers (hereafter referred to as I). The well-known four-region form for the formulas arises naturally in this formulation. In addition, there are Dirac delta-function terms when $n \leq -4$ and $n - l$ is odd. Some recurrence relations are also derived to aid in applications.

II. NOTATION AND CONVENTIONS

As discussed in I, we require

$$n + l + 2 > -1.$$

We refer extensively to Eqs. (4)–(12) of I, which define Condon–Shortley coefficients, the partial-wave expansion of $\exp(ik\cdot r)$, spherical Bessel functions, double factorials, the sgn function, and $\delta^{(\omega)}(x)$. The main difference in notation between I and here is that τ_1 and τ_2 are measured from different origins, and τ_{12} is defined by Eq. (2).
III. DERIVATION

Write \(r_{12}^n Y^m(\theta_{12}, \phi_{12}) \) as an inverse Fourier-transform (cf. Ruedenberg),

\[
r_{12}^n Y^m(\theta_{12}, \phi_{12}) = (2\pi)^{-3} \int d^3k \exp[-ik \cdot (r_1 - r_2 - R)] F.T. \{r^n Y^m\},
\]

(4)

where F.T. \(\{r^n Y^m\} \) denotes the Fourier transform of \(r^n Y^m(\theta, \phi) \). Using Eqs. (4), (5), and (14)–(16) of I, one obtains

\[
r_{12}^n Y^m(\theta_{12}, \phi_{12}) = \sum_{l_1,l_2,m_1,m_2} \frac{1}{l_1! l_2!} \frac{1}{m_1! m_2!} \frac{1}{l_1 + l_2} \frac{1}{m_1 + m_2} \frac{1}{l_1!} \frac{1}{m_1!} \frac{1}{l_2!} \frac{1}{m_2!} \frac{1}{l_1 + l_2 + m_1 + m_2} \frac{1}{l_1 + l_2 + m_1 + m_2}
\]

\[
\times Y^{m_1}_l(\theta_{12}, \phi_{12}) Y^{m_2}_{l_2}(\theta_{12}, \phi_{12}) Y^{m_1-m_2}_{l_2}(\theta_{22}, \phi_{22}) V_{l_1 l_2 l_1}^{(a)}(r_1, r_2, R),
\]

(5)

where

\[
V_{l_1 l_2 l_1}^{(a)}(r_1, r_2, R) = \text{const} \sum_{m_1,m_2,i,j} \frac{1}{r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2}}
\]

\[
\times \sin[k(R+r_1+r_2)] + \sin[k(R+r_1-r_2)] - \sin[k(R+r_1-r_2)] - \sin[k(R+r_1+r_2)],
\]

(6)

and is analogous to \(v_{l_1 l_2 l_1}^{(a)}(r_1, r_2) \) in the Laplace expansion [Eq. (17) of I]. The \(\tau_{nl}(k) \) is the radial part of F.T. \(\{r^n Y^m(\theta, \phi)\} \) and is given by Eqs. (23)–(25) of I. If one notes that

\[
j_{l_1}(kr_1)j_{l_2}(kr_2)j_{l_1}(kr_1) = -\frac{1}{2}(l_1+l_2+1)j_{l_1}(kr_1)j_{l_2}(kr_2)j_{l_1}(kr_1)
\]

\[
\times [\sin[k(R+r_1+r_2)] + \sin[k(R+r_1-r_2)] - \sin[k(R+r_1-r_2)] - \sin[k(R+r_1+r_2)],
\]

(7)

the integration of Eq. (6) is almost identical with the integration of Eq. (17) of I, and the result is

\[
V_{l_1 l_2 l_1}^{(a)}(r_1, r_2, R) = 4\pi(-1)^{l_1-l_2} (l_1+l_2+1) (n-l+1) (n-l+1) \sum_{m_1,m_2,i,j} \frac{1}{r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2} r_1^{i/2} r_2^{j/2}}
\]

\[
\times [(2l_1+2\mu_1+1)! (2l_2+2\mu_2+1)! (2l_1+2\mu_1+1)! (2l_2+2\mu_2+1)! (2\mu_1)! (2\mu_2)!]^{-1},
\]

(8)

\[
(n-l) = 2 \text{ and even}, \quad V = 0 \text{ when } n < l + l_1 + l_2,
\]

(9)

IV. REMARKS

When \(n-l \geq 0 \) and is even, the series (5) terminates [Eq. (8)], because \(r_{12}^n Y^m(\theta_{12}, \phi_{12}) \) is just a homogeneous polynomial of degree \(n \) in \(x_{12}, y_{12}, \) and \(z_{12}. \) When \(n-l \) is even and negative, there are logarithmic terms [Eq. (9)]. We have not carried out the differentiations in Eq. (9) for \(n \leq -4, \) the derivatives generate poles. In this case, one must interpret integrals [such as Eqs. (2) of \(\Gamma \)] over the bipolar expansion in the generalized function sense, and either integrate by parts or take the derivatives (by manipulating them into derivatives with respect to \(R \)) after integration. Note that in Eqs. (9)–(11), the use of absolute value and \(\text{sgn} \) functions gives a single formula valid for all (positive) values of \(r_1 \) and \(r_2. \) The \(n-l \) odd and \(n \leq -4 \) case, Eq. (10), contains Dirac delta functions. In the next section we separate off the delta-function terms and also write the remainder in the familiar (at least for \(r_{12}^{-1} \)) four-region form.

We note that Eqs. (8)–(10) can be obtained from Eq. (11) by letting \(n \) approach an integer and using
l'Hospital's rule, when necessary. We also note that the structure of the solutions for $V_{l_1 l_2 l_3}(r_1, r_2, R)$ is that postulated by Sack.\(^\text{11}\)

V. DELTA-FUNCTION TERMS

When $n \leq -4$, and $n - l$ is odd, Eq. (10) contains delta functions. Write

$$V_{l_1 l_2 l_3}(n) = V_{l_1 l_2 l_3}(n)(n = 0) + V_{l_1 l_2 l_3}(n)(n),$$

$$\quad (n - l \text{ odd, } n \leq -4). \quad (12)$$

The $\text{sgn}(R \pm r_1 \pm r_2)$ change sign along the lines, $r_1 + r_2 = R$, $r_1 - r_2 = R$, and $r_2 - r_1 = R$, thus dividing $r_1 r_2$ space into four regions (see Fig. 2). One can obtain formulas for each region by expanding $\text{sgn}(R \pm r_1 \pm r_2)$ as a polynomial and then taking the derivatives in Eq. (10). The results are

$$V_{l_1 l_2 l_3}(n)(n)(r_1, r_2, R) = 4\pi (-1)^{l_1 + (n + l + 1)/2}(n - l + 1)!\left[\left(\frac{n - n - 2}{2}\right)
ight]^{-1}$$

$$\times \left[\sum_{\mu_1 \geq 0, \mu_2 \geq 0, \mu_3 \geq 0}^{\mu_1 + \mu_2 + \mu_3 = n-4} \frac{r_1^{l_2 + 2\mu_2 + 1} + (2\mu_2)!}{(2\mu_2 + 1)!} \frac{r_2^{l_3 + 2\mu_3 + 1} + (2\mu_3)!}{(2\mu_3 + 1)!} \frac{R^{2\mu_1 + 1} + (2\mu_1)!}{(2\mu_1 + 1)!}\right],$$

$$\text{Region 1, } r_1 + r_2 < R. \text{ N.B., } V_{l_1 l_2 l_3}(0) = 0, \text{ when } n - l_1 - l_2 + l_3 + 1 < 0, \quad (13)$$

$$V_{l_1 l_2 l_3}(n)(r_1, r_2, R) = \text{same as Eq. (13), except that } r_1, l_1, \mu_1 \text{ and } R, l_3, \mu_3 \text{ are interchanged in the expression enclosed by brackets}, \quad \text{Region 2, } r_1 + r_2 < R. \text{ N.B., } V_{l_1 l_2 l_3}(0) = 0, \text{ when } n + l_1 - l_2 - l_3 + 1 < 0, \quad (14)$$

$$V_{l_1 l_2 l_3}(n)(r_1, r_2, R) = \text{same as Eq. (13), except that } r_2, l_2, \mu_2 \text{ and } R, l_3, \mu_3 \text{ are interchanged in the expression enclosed by brackets}, \quad \text{Region 2', } r_1 + R < r_2. \text{ N.B., } V_{l_1 l_2 l_3}(0) = 0, \text{ when } n_1 + l_1 - l_2 - l_3 + 1 < 0, \quad (15)$$

$$V_{l_1 l_2 l_3}(n)(r_1, r_2, R) = \pi (-1)^{l_1 + (n + l + 1)/2}(n - l + 1)!\left[\left(\frac{n - n - 2}{2}\right)
ight]^{-1}$$

$$\times \left[\sum_{\mu_1 \geq 0, \mu_2 \geq 0, \mu_3 \geq 0}^{\mu_1 + \mu_2 + \mu_3 = n-4} \left(-1\right)^{\mu_1 + \mu_2 + \mu_3} R^{-l_2 - l_3 + l_1} \mu_1 ! \left(\mu_1 - 2l_1 + 1\right) ! \mu_2 ! \left(\mu_2 - 2l_2 + 1\right) ! \mu_3 ! \left(\mu_3 - 2l_3 + 1\right) !\right],$$

$$\text{Region 3, } r_1 - r_2 < R < r_1 + r_2. \quad (16)$$

In the Region 3 formula [Eq. (16)], $\left[(-2N)\right]^{-1}$ is to be interpreted as zero, when $N > 0$.

The delta-function terms, arising from derivatives of the sgn functions, are readily seen to be

$$V_{l_1 l_2 l_3}(n)(r_1, r_2, R) = (2\pi) (-1)^{l_2 + (n + l + 1)/2}(n - l + 1)!\left(\frac{n - n - 2}{2}\right)^{-1}$$

$$\times \left[\sum_{\mu_1 \geq 0, \mu_2 \geq 0, \mu_3 \geq 0}^{\mu_1 + \mu_2 + \mu_3 = n-4} \left(-1\right)^{\mu_1 + \mu_2 + \mu_3} R^{-l_2 - l_3 + l_1} \mu_1 ! \left(\mu_1 - 2l_1 + 1\right) ! \mu_2 ! \left(\mu_2 - 2l_2 + 1\right) ! \mu_3 ! \left(\mu_3 - 2l_3 + 1\right) !\right],$$

$$\text{Region 3', } r_1 - r_2 < R < r_1 + r_2. \quad (17)$$

The total δ-function contribution can be simplified by plugging Eq. (17) into Eq. (5) and then summing over l_3 and λ. One makes use of Eq. (35) of I and the relation

$$\sum_{l_3 = 0}^{\infty} \sum_{l_1 = 1}^{\lambda} \sum_{l_2 = 1}^{\lambda} \sum_{m = -l_2}^{l_2} \sum_{m_2 = -l_2}^{l_2} \sum_{m_3 = -l_3}^{l_3} (-1)^{(l_1 + l_3)/2}(-1)^{(l_2 + l_3)/2}(2\lambda + 1)^{l_3/2}$$

$$\times (2l_1 + 1)^{l_1/2} (4\pi)^{l_1} c^4 (l_3 m_3 l_2 m_2) Y_{l_2 m_2}^{m_2 m_3}(\theta_{l_2}, \phi_{l_2}) Y_{l_1 m_3}(\theta_{l_3}, \phi_{l_3}) Y_{l_3 m_3}(\theta_{l_3}, \phi_{l_3})$$

$$= \sum_{l_3 = 0}^{\infty} \sum_{l_1 = 1}^{\lambda} \sum_{l_2 = 1}^{\lambda} \sum_{m = -l_2}^{l_2} \sum_{m_2 = -l_2}^{l_2} (-1)^{(l_1 + l_3)/2}(-1)^{(l_2 + l_3)/2} Y_{l_1 m_3}(\theta_{l_1}, \phi_{l_1}) Y_{l_2 m_2}(\theta_{l_2}, \phi_{l_2}) Y_{l_3 m_3}(\theta_{l_3}, \phi_{l_3}),$$

$$\delta(\Omega_{l_1 l_2 l_3}) \delta(\Omega_{l_1 l_2 l_3}) \delta(\Omega_{l_3 l_2 l_3}), \quad (18)$$

\(^{11}\) See Ref. 6, p. 1776, question (b).
where \(\delta(\Omega) \) is the delta function of solid angle, to obtain,
\[
[r_{12}^n Y_{l}^{m}(\theta_{12}, \phi_{12})]^{(n)} = \left[\text{Eq. (5) with } V^{(n)}(\Omega) \text{ substituted for } V^{(n)} \right] = 8\pi^2 \left(-1 \right)^{(n+l+1)/2}(n+l+1)! \left[(l-n-2)! \right]^{-1} \sum_{p_{l2}=0}^{\infty} \sum_{p_{l20}=p_{l2}} \sum_{p_{l200}=p_{l20}} \sum_{p_{l2000}=p_{l200}} \left(-1 \right)^{p_{l2}}
\times \left\{ \left[(2\mu_1) \right] \left[(2\mu_2) \right] \right\}^{-1} r_{1}^{-\mu_{1}-1} r_{2}^{-\mu_{2}-1} R^{-\mu_{1}} (d/dR)^{-\mu_{1}} \left(d/dR \right)^{-\mu_{2}} \left(d/dR \right)^{-\mu_{2}} \nabla \cdot \nabla \nabla \left(\frac{1}{r_{1}^{2}} \right) \left(\frac{1}{r_{2}^{2}} \right) \left(\frac{1}{R^{2}} \right)
\times Y_{l}^{m}(\theta_{R}, \phi_{R}) \left[\delta(R-r_{1}-r_{2}) \delta(\Omega_{1}+\Omega_{R}) \delta(\Omega_{2}+\Omega_{R}) - \left(-1 \right)^{n} \delta(R+r_{1}-r_{2}) \delta(\Omega_{1}+\Omega_{R}) \delta(\Omega_{2}+\Omega_{R}) \right] \nabla \cdot \nabla \nabla \left(\frac{1}{r_{1}^{2}} \right) \left(\frac{1}{r_{2}^{2}} \right) \left(\frac{1}{R^{2}} \right),
\] (n - l odd, n \leq -4).
(21)

Note that the double integral
\[
\int dV_{1} \int dV_{2}
\]
of Eq. (21) reduces to a line integral along the internal boundaries of the four regions [see, e.g., Fig. 2]. By use of relations like
\[
\delta(R-r_{1}-r_{2}) \delta(\Omega_{1}+\Omega_{R}) \delta(\Omega_{2}+\Omega_{R}) = R \int_{0}^{1} d\delta(r_{1}+tR) \delta(r_{2}+R-tR) r_{1} r_{2}^{2},
\] (22)
the result can be cast in terms of one-dimensional integrals over the products of two three-dimensional \(\delta \) functions,
\[
[r_{12}^n Y_{l}^{m}(\theta_{12}, \phi_{12})]^{(n)} = 8\pi^2 \left(-1 \right)^{(n+l+1)/2}(n+l+1)! \left[(l-n-2)! \right]^{-1} \sum_{p_{l2}=0}^{\infty} \sum_{p_{l20}=p_{l2}} \sum_{p_{l200}=p_{l20}} \sum_{p_{l2000}=p_{l200}} \left(-1 \right)^{p_{l2}}
\times \left\{ \left[(2\mu_1) \right] \left[(2\mu_2) \right] \right\}^{-1} r_{1}^{-\mu_{1}+1} r_{2}^{-\mu_{2}+1} R^{-\mu_{1}+1} (d/dR)^{-\mu_{1}+1} \left(d/dR \right)^{-\mu_{2}+1} \left(d/dR \right)^{-\mu_{2}+1} \nabla \cdot \nabla \nabla \left(\frac{1}{r_{1}^{2}} \right) \left(\frac{1}{r_{2}^{2}} \right) \left(\frac{1}{R^{2}} \right)
\times Y_{l}^{m}(\theta_{R}, \phi_{R}) \left(\int_{0}^{1} dt \delta(r_{1}+tR) \delta(r_{2}+R-tR) - \int_{0}^{\infty} dt \left[(1) \right] \delta(r_{1}+tR) \delta(r_{2}+R+tR)
\right. + \left(-1 \right)^{n} \delta(r_{1}-R-tR) \delta(r_{2}-tR) \right),
\] (n - l odd, n \leq -4).
(23)

The simplest example is \(n = -4, l = 3, \)
\[
[r_{12}^{-4} Y_{3}^{m}(\theta_{12}, \phi_{12})]^{(4)} = \left(8\pi^2/15 \right) r_{1} r_{2} Y_{3}^{m}(\theta_{R}, \phi_{R}) \left(\int_{0}^{1} dt \delta(r_{1}-tR) \delta(r_{2}+R-tR) - \int_{0}^{\infty} dt \delta(r_{1}+tR) \delta(r_{2}+R+tR)
\right.
\left. - \int_{0}^{\infty} dt \delta(r_{1}-R-tR) \delta(r_{2}-tR) \right).
\] (24)

VI. RECURRENCE FORMULAS

Of the five indices on which the \(V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} \) depend, the dependence on \(l \) is particularly simple, involving only a multiplicative constant
\[
V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} = \left[(n+l+3)/(n-l) \right] V_{12l_{2}l_{2}l_{2}}^{(n)}.
\] (25)
Four more independent recurrence formulas can be derived directly from Eq. (6) along with Eqs. (23)–(25) and (23') of I, and via the well-known recurrence formulas for spherical Bessel functions,
\[
x^{-l} j_{l}(x) = \left[j_{l+1}(x) + j_{l-1}(x) \right] / (2l+1),
\] (26)
\[
x^{-l-1} \left(d/dx \right) x^{l} j_{l}(x).
\] (27)
These are
\[
(n-l+2)^{-1} V_{12l_{2}l_{2}l_{2}l_{2}}^{(n+l+1)} (r_{1}, r_{2}, R) = \left[r_{2}/(2l+1) \right] V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} (r_{1}, r_{2}, R) - V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} (r_{2}, r_{1}, R),
\] (28)
\[
= -\left[r_{2}/(2l+1) \right] V_{12l_{2}l_{2}l_{2}l_{2}}^{(n-1)} (r_{1}, r_{2}, R) - V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} (r_{2}, r_{1}, R),
\] (29)
\[
= -r_{2}/(2l+1) V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} (r_{1}, r_{2}, R) - V_{12l_{2}l_{2}l_{2}l_{2}}^{(n)} (r_{2}, r_{1}, R),
\] (30)
and

\[
\left[(n+1+l_1+l_2+l_3+4)/(u-l+2) \right] V_{l_1l_2l_3l_4}^{(n+1)} = r_1 V_{l_1-1,l_2l_3l_4}^{(n)} - r_2 V_{l_1l_2+1,l_3l_4}^{(n)} - RV_{l_1l_2l_3l_4-1,n}^{(n)}.
\]

(31)

VII. SUMMARY

The bipolar expansion for \(r_{l_1}^{n} Y_{l_1}^{m}(\theta_1, \phi_1) \) is derived via the theory of generalized functions and Fourier transforms. The results are contained in Eqs. (5) and (8)–(11). The four-region form of the expansion is implicit in the formulas through the occurrence of the absolute value \(|\text{sgn} f(x)| \). When \(n-l \) is odd and \(n \leq -4 \), there are delta-function terms, which have been separated from the ordinary terms in Eqs. (12)–(17). The delta-function part of the expansion is summed explicitly in Eq. (23). Some recurrence formulas for the radial functions \(V_{l_1l_2l_3l_4}^{(n)}(r_1, r_2, R) \) are given—Eqs. (25) and (28)–(31).

Threshold Electron-Impact Excitation and Negative-Ion Formation in XeF₆ and XeF₄

G. M. Begent and R. N. Compton

Chemistry and Health Physics Divisions, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

(Received 29 April 1969)

Electronic excitation and dissociative electron attachment in XeF₆ and XeF₄ were investigated by studying the products of low-energy electron-molecule collisions in the gas phase. The relative abundances of the major negative ions produced were recorded as a function of the electron-beam energy. Both molecules attached electrons at \(\sim 0 \) and \(\sim 5 \) eV and dissociated into a number of negative-ion products. The similar energy dependence of the various ion currents suggested that the fragment ions were competing for the electron attached to XeF₆ or XeF₄. The threshold electron-impact excitation spectra were determined by means of the “SF₄-electron-scavenger” technique. No evidence for low-lying electronic states was found.

INTRODUCTION

Xenon hexafluoride was first prepared in 1963.\(^1\)\(^,\)\(^2\) Since that time, the compound has been the subject of numerous experimental studies as well as considerable theoretical speculation. Despite this concentration of activity, the nature of gaseous XeF₆ is still a puzzle. Vapor-density determinations\(^3\) show no association in the gas phase. The infrared and Raman spectra\(^4\)–\(^6\) have not been explained satisfactorily. Electron-diffraction experiments\(^5\)–\(^8\) indicate that the vapor molecules do not have octahedral symmetry. Molecular-beam experiments\(^9\)\(^,\)\(^10\) show that the dipole moment of XeF₆ is very close to zero and that the gaseous substance is not paramagnetic. Mass-spectral studies of the positive ions produced by electron impact\(^11\) showed the ions XeF⁺, XeF₃⁺, XeF₂⁺, XeF⁺, XeF₂⁺, XeF₃⁺, and Xe⁺, with the XeF₄⁺ ion current being very weak. We felt that the negative-ion spectrum and the threshold electron-impact excitation spectrum of XeF₆ might give information about dissociation of the molecule and about its electronic energy levels. Since the optical selection rules do not hold for low-energy electron-impact excitation, it is possible to observe states in the electron-impact spectrum which are optically forbidden. Studies of the fluorine-xenon system\(^8\) showed that the low-pressure thermodynamic equilibrium favors the dissociation of XeF₆ into XeF₄ and F₂. For this reason, we also examined XeF₄ briefly in the same manner as XeF₆ to ascertain if we were actually observing XeF₆ in the mass spectrometer. The marked differences between the ion-abundance curves and the threshold excitation spectra for XeF₄ and XeF₆ showed clearly that XeF₆ does not dissociate rapidly at low pressures to XeF₄ and F₂.

EXPERIMENTAL

Xenon hexafluoride was prepared by heating an excess of F₂ with Xe in a prefluorinated Ni reaction vessel containing NaF pellets. The vessel was heated for several days at 250°C and the excess F₂ and other

\(^{12}\) M. H. Studier and E. N. Sloth, in Ref. 4, p. 47.