Explicit Formulas for the Nth-Order Wavefunction and Energy in Nondegenerate Rayleigh–Schrödinger Perturbation Theory

HARRIS J. SILVERSTONE† and THOMAS T. HOLLOWAY

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 27 August 1969)

The wavefunction and energy in nth order of Rayleigh–Schrödinger perturbation theory are shown to be given by

\[E_n = \sum_{\sigma_1, \sigma_2, \ldots, \sigma_n; (\sigma_1 + 2\sigma_2 + \cdots + n\sigma_n = 0; \sigma_i \geq 0, i = 1, 2, \ldots, n)} (\sigma_1 \sigma_2 \cdots \sigma_n)^{-1} \left(\frac{d}{dE_0} \right)^{2n-1} (V)^{n-1} (V \alpha^* V)^{n-1} \cdots \times (V (a^{-1} V)^{n-1})^* \theta_n, \]

\[\chi_n = \langle a^{-1} V \rangle + \sum_{i=1}^{n-1} \sum_{\sigma_1, \sigma_2, \ldots, = n-i; \sigma_i \geq 0, i = 1, 2, \ldots} (\sigma_1 \sigma_2 \cdots)^{-1} \left(\frac{d}{dE_0} \right)^{2n-1-i} (V)^{n-1} (V \alpha^* V)^{n-1-i} \cdots \times (V (a^{-1} V)^{n-1-i})^* \theta_{n-i} (d/dE_0) (a^{-1} V)^{i} \chi_0 \rangle. \]

Here \(|0\rangle \) is the unperturbed eigenfunction of \(H_0 \) with energy \(E_0 \), \(V \) is the perturbation, \((V \cdots V) \) denotes \((0 | V \cdots V | 0) \), and \(a^+ \) is \((1 - |0\rangle \langle 0|) (E_0 - H_0)^{-1} (1 - |0\rangle \langle 0|) \). The wavefunction is given in the so-called “intermediate normalization.” Partial summations of these formulas give the energy in Brillouin–Wigner perturbation theory.

I. INTRODUCTION

Explicit formulas for the energy and wavefunction in Rayleigh–Schrödinger perturbation theory have been known for many years.\(^5\) Although elegant, the known formulas have redundancies (equal terms occurring more than once) and involve nontrivial bookkeeping. The purpose of this paper is to derive more concise formulas with minimal bookkeeping. In addition, the new formulas are used to express the energy and wavefunction to the nth order of Brillouin–Wigner perturbation theory explicitly as partial summations of the Rayleigh–Schrödinger series.

Section II contains a statement of Rayleigh–Schrödinger perturbation theory and a comparison of various explicit formal solutions. The new formulas are derived in Sec. III, and the connection with Brillouin–Wigner perturbation theory is shown in Sec. IV.

II. RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY

Consider a Hamiltonian \(H \), which is the sum of an unperturbed Hamiltonian \(H_0 \) and a perturbation \(V \),

\[H = H_0 + V. \] (1)

Let \(\Psi \) denote a nondegenerate eigenfunction of \(H \) with energy \(E \),

\[(H - E) \Psi = 0. \] (2)

Develop \(\Psi \) and \(E \) in power series in the strength of \(V \),

\[\Psi = |0\rangle + \chi_1 + \chi_2 + \cdots, \] (3)
\[E = E_0 + E_1 + E_2 + \cdots, \] (4)

where

\[(H_0 - E_0) |0\rangle = 0, \] (5)

and where \(|0\rangle \) and \(\Psi \) are normalized according to

\[\langle 0 | 0 \rangle = 1, \] (6)
\[= \langle 0 | \Psi \rangle, \] (7)
\[\langle 0 | \chi_i \rangle = 0, \quad (i = 1, 2, \cdots). \] (8)

The standard textbook approach\(^6\) to solving Eqs. (2)–(8) is to find \(E_n \) and \(\chi_n \) recursively:

\[\chi_1 = a^{-1} V |0\rangle, \] (9)
\[\chi_n = a^{-1} V \chi_{n-1} - \sum_{i=1}^{n-1} E_i a^{-1} \chi_{n-i}, \] (10)
\[E_1 = \langle 0 | V | 0 \rangle, \] (11)
\[E_n = \langle 0 | V | \chi_{n-1} \rangle. \] (12)

\(^*\) Supported in part by the U.S. Army Research Office—Durham, Durham, N. C.

† Alfred P. Sloan Research Fellow.

\(^5\) (a) T. T. Holloway and J. E. Kilpatrick, “High Order Nondegenerate Perturbation” (to be published). (b) We note in passing that Eq. (21) can be obtained from Eq. (22) as follows: (1) Take all distinct orders for the \((\Sigma \alpha_0)\) factors and multiply by \(\Pi (\sigma_1!) / (\Sigma \alpha_0)!\) (the reciprocal of the number of distinct permutations). (2) Replace each \(\cdots V \cdots V \cdots \) by \(\cdots V \cdots V \cdots \cdots \cdots \).

Here a^{-1} denotes the reduced resolvent,
\begin{equation}
a^{-1} = (1 - | 0 \rangle \langle 0 |)(E_0 - H_0)^{-1}(1 - | 0 \rangle \langle 0 |). \tag{13}
\end{equation}

A. Various Explicit Formal Solutions

The first explicit formulas for E_n and χ_n, not involving lower-order E_m and χ_m, were derived by Kato.1 Let S^0 and S^k be defined by
\begin{equation}
S^0 = - | 0 \rangle \langle 0 |, \tag{14}
\end{equation}
\begin{equation}
S^k = a^{-k}, \quad (k \geq 1). \tag{15}
\end{equation}

Then Kato's formula7 is
\begin{equation}
E_n = \sum_{(k_1+k_2+\ldots+k_{n+1})=n-1; \ k_i \geq 0, i=1,2,\ldots,n+1} \text{Tr} \{ S^{k_1}V S^{k_2}V \cdots V S^{k_{n+1}} \}. \tag{16}
\end{equation}

Bloch2 obtained similar formulas having fewer terms but requiring more elaborate bookkeeping:
\begin{equation}
E_n = \sum_{(k_1+k_2+\ldots+k_{n+1})=n-1; \ k_i \geq 0, i=1,2,\ldots,n+1} [0 \mid V S^{k_1}V S^{k_2}V \cdots V S^{k_{n+1}}V \mid 0], \tag{17}
\end{equation}
\begin{equation}
\chi_n = \sum_{[\text{same qualification as for Eq. (17)]}} S^{k_1}V S^{k_2}V \cdots S^{k_{n-1}}V \mid 0. \tag{18}
\end{equation}

A superficially different set of formulas in a form suggested by Brueckner4 were derived from Bloch's formulas by Huby8 (to whose paper the reader is referred for the complete prescription):
\begin{equation}
E_n = \langle V(a^{-1}V)^{n-1} \rangle - \langle V a^{-1}V(a^{-1}V)^{n-2} \rangle - \langle V a^{-1}V(a^{-1}V)^{n-3} \rangle - \cdots, \tag{19}
\end{equation}
\begin{equation}
\chi_n = (a^{-1}V)^{n} \langle 0 \mid a^{-1}V(a^{-1}V)^{n-1} \mid 0 \rangle - \langle V a^{-1}V(a^{-1}V)^{n-2} \rangle - \cdots. \tag{20}
\end{equation}

A formula, similar to Kato's and Bloch's for E_n, has been suggested9b (without proof10b):
\begin{equation}
E_n = \sum_{(k_1+k_2+\ldots+k_{n+1})=n-1; \ k_i \geq 0, i=1,2,\ldots,n+1} \langle V S^{k_1}V S^{k_2}V \cdots S^{k_{n+1}}V \rangle. \tag{21}
\end{equation}

In addition, there are two diagrammatic methods, one based on the application of Goldstone8 diagrammology to a one-particle state, the other being a more heuristic recipe.

The new formulas derived here are
\begin{equation}
E_n = \sum_{(\sigma_1+2\sigma_1+\cdots+\sigma_n=n; \ \sigma_i \geq 0, i=1,2,\ldots,n)} (\sigma_1|\sigma_2|\cdots|\sigma_n)^{-1}(d/dE_0)^{2\sigma_1-1} \langle V \rangle \sigma_1 \langle V a^{-1}V \rangle \sigma_2 \cdots \langle V (a^{-1}V)^{n-1} \rangle \sigma_n, \tag{22}
\end{equation}
\begin{equation}
\chi_n = (a^{-1}V)^{n} \langle 0 \mid + \sum_{j=1}^{n-1} \sum_{(\sigma_1+2\sigma_1+\cdots+\sigma_n-j=n-j; \ \sigma_i \geq 0, i=1,2,\ldots,j)} (\sigma_1|\sigma_2|\cdots|\sigma_{n-j})^{-1}(d/dE_0)^{2\sigma_1-1} \times \langle V \rangle^{n-j} \langle V a^{-1}V \rangle^{j} \cdots \langle V (a^{-1}V)^{n-j-1} \rangle^{j}(d/dE_0)^{j} (a^{-1}V)^{j} \mid 0 \rangle, \quad (n=1,2,\ldots,). \tag{23}
\end{equation}

Only a^{-1} depends explicitly on E_0, and the (d/dE_0) are evaluated via
\begin{equation}
(d/dE_0)a^{-k} = -ka^{-k-1}. \tag{24}
\end{equation}

B. Comparison of Explicit Formulas

Note that all the explicit formulas except Eqs. (19) and (20) involve partitioning an integer into a sum of nonnegative integers.

The numbers of terms in Eqs. (16) and (17) have been determined by Bloch.3 Equation (16) (Kato) has the largest number of terms, $(2n)!/[n!(n-1)!]^2$, Equation (17) (Bloch) has $(2n-1)!/[n!(n-1)!]^2$, which is a reduction by a factor of $2n(2n-1)$, while for $n \geq 2$.

3 The number of terms in Eq. (17) (Huby–Brueckner) has the same number of terms as Eq. (17).3 The number of terms in Eq. (21) can be shown to be $(2n-3)!/[n!(n-2)!]^2$, which is reduction from Eq. (16) by a factor $4(2n-1)$, but has an increase over Eq. (17) by $n/2$. On the other hand, the bookkeeping for Eq. (17) is more complicated than for Eqs. (16) and (21), which have a similar restrictions on the k_i.

The number of terms in Eq. (22) is one less than the number of partitions of n into positive integers (for $n \geq 2$). This number is far less than for any of the other formulas, but is also misleading because the derivatives, when taken explicitly, increase the number of terms. Nevertheless, even allowing for the differentiations, the ordered structure of Eq. (22) must result in the least redundancy. The bookkeeping for the ϵ_i in Eq. (22) is simpler than for Eqs. (16) and (21), because the partitions of n are ordered.

Similar comments can be made for the χ_n formulas.

1 Here only the formula for E_n is given. Kato's Ψ is not normalized the same way as ours.
2 B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
III. Derivation

Originally we obtained Eqs. (22) and (23) by a diagrammatic method, the essence being to sum all diagrams with identical numerators. However, the approach described below, which is based on complex variable theory, is more concise. Briefly, we sum Eqs. (22) and (23) over \(n \) and show that the result is \(E \) and \(\Psi \).

In what follows, we use the Taylor series,

\[
\sum_{j=1}^{\infty} j^{-n} x^j = x(1-x)^{-1},
\]

\[
\sum_{j=1}^{\infty} j^{-n} x^j = -\log(1-x),
\]

and the residue theorem, especially in the context

\[
\left[(m-1)! \right]^{-1} (d/dE_o)^{m-1} F(E_o) = (2\pi i)^{-1} \oint dz \, z^{-m} F(z+E_o).
\]

We also use

\[
(x_1+x_2+\cdots)^m = \sum_{\sigma_1 \geq 0, \sigma_2 \geq 0, \cdots : (\sigma_1 + \sigma_2 + \cdots) = m} m! \prod (\sigma_i!)^{-1} x_1^{\sigma_1} x_2^{\sigma_2} \cdots ,
\]

and define

\[
a_z = (1 - |0\rangle \langle 0|) (E_0 + z - H_0)^{-1} (1 - |0\rangle \langle 0|).
\]

We take Eqs. (22) and (23), sum over \(n \) \(= 1, 2, \cdots, \infty \), and use Eqs. (25)-(29) to obtain

\[
"E-E_0" = \sum_{n=1}^{\infty} E_n [\text{Eq. (22)}],
\]

\[
= \sum_{\sigma_1 \geq 0, \sigma_2 \geq 0, \cdots : (\sigma_1 + \sigma_2 + \cdots) \geq 1} \prod (\sigma_i!)^{-1} (d/dE_o)^{2\sigma_1} (V)^{\sigma_1} (V a^{-1} V)^{\sigma_2} \cdots ,
\]

\[
= - (2\pi i)^{-1} \oint_r dz \log\left[1 - z^{-1} \sum_{n=0}^{\infty} \langle V(a_z^{-1} V)^n \rangle \right],
\]

\[
"\Psi - |0\rangle" = \sum_{n=1}^{\infty} x_n [\text{Eq. (23)}],
\]

\[
= (2\pi i)^{-1} \oint_r dz \, z^{-1}(1-a_z^{-1} V)^{-1} a_z^{-1} V |0\rangle
\]

\[
- (2\pi i)^{-1} \oint_r dz \log\left[1 - z^{-1} \sum_{n=0}^{\infty} \langle V(a_z^{-1} V)^n \rangle \right] (d/dz) (1-a_z^{-1} V)^{-1} a_z^{-1} V |0\rangle.
\]

We must prove that the quantities placed in quotes have their usual meanings. Much could be said about the legality of the above maneuvers, but a full justification is related to the convergence of the perturbation series, which is indeed a difficult problem. Since we are interested only in a formal result, it suffices to assume that there exists a contour \(\Gamma \) encircling the origin such that

\[
\left| z^{-1} \right| \sum_{n=0}^{\infty} \langle V(a_z^{-1} V)^n \rangle \left| <1
\]

on \(\Gamma \). Then for the integrands in Eqs. (31) and (33), \(\Gamma \) encloses a logarithmic branch cut running from \(z=0 \) to \(z=y \) (see Fig. 1).

To evaluate Eq. (31), write

\[
E - E_0 = -(2\pi i)^{-1} \oint_r dz \log(1-z^{-1}y)
\]

\[
- (2\pi i)^{-1} \oint_r dz \log\left[z - \sum_{n=0}^{\infty} \langle V(a_z^{-1} V)^n \rangle \right] (z-y)^{-1}.
\]
The second integral has no singularity inside \(\Gamma \) provided (another assumption!) that
\[
\lim_{z \to y} \sum_{n=0}^{\infty} (V(a_z^{-1}V)^n) = 1. \tag{37}
\]

The value of the first integral is just \(y \),
\["E - E_0" = y. \tag{38}\]

But examination reveals that Eq. (35) is the Brillouin-Wigner formula for the energy shift,\(^\text{11}\) so that \(y = E - E_0 \), which with Eqs. (38) and (4) proves the correctness of Eq. (22).

To evaluate \("\Psi - |0\rangle \)\), we integrate the second term in Eq. (33) by parts, note that one differentiated term cancels the first term in Eq. (33), and obtain
\[
\langle z - y \rangle^{-1} \sum_{n=0}^{\infty} (V(a_z^{-1}V)^n)(\Gamma)(\text{1st} \sum_{n=0}^{\infty} (V(a_z^{-1}V)^n)(1 - a_z^{-1}V^{-1}a_z^{-1}V | 0). \tag{39}\]

The only singularity inside \(\Gamma \) in Eq. (39) is a pole at \(z = y \) [again, provided Eq. (37) is satisfied], and since
\[
\sum_{n=0}^{\infty} (V(a_z^{-1}V)^n) = (1 - \langle d/dz \rangle \sum_{n=0}^{\infty} (V(a_z^{-1}V)^n))^{-1}
\]
we obtain
\[
\langle z - y \rangle^{-1} \text{ as } z \to y, \tag{40}\]

But since \(y \) is the solution of Eq. (35), i.e., the energy shift, Eq. (41) is just the Brillouin-Wigner formula for \(\Psi - |0\rangle \)\(^\text{11}\):
\["\Psi - |0\rangle" = \Psi - |0\rangle, \tag{42}\]
and Eq. (23) for \(\chi_n \) is thus proved.
