Kinetic-Energy Expectation Values with Discontinuous Approximate Wave Functions

Harris J. Silverstone and Edward W. Stuebing
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 30 August 1971)

The Schlosser-Marcus stationary principle for discontinuous approximate wave functions is shown to be the “finite part” of the energy expectation value. The divergent terms in the expectation value of kinetic energy are second order in the discontinuity, which explains why the energy expression obtained when they are omitted remains stationary.

Energy eigenfunctions must be continuous and have continuous first derivatives. Approximate eigenfunctions may have discontinuous first derivatives or even be discontinuous themselves, if suitable formulas are used for kinetic-energy matrix elements.1-4 This paper is to clarify some confusion concerning the justification of these “suitable formulas.”

When ψ is continuous but has jump discontinuities in its first derivatives, the kinetic-energy expectation value is correctly given by

\[\langle \psi | -\frac{1}{2} \nabla^2 | \psi \rangle = \frac{1}{2} \int (\nabla \psi)^* (\nabla \psi) dV. \]

(1)

It is not always appreciated that

\[\langle \psi | -\frac{1}{2} \nabla^2 | \psi \rangle = -\frac{1}{2} \int \psi^* \nabla^2 \psi dV. \]

(2)

is also correct if \(\nabla^2 \psi \) is evaluated correctly.

Consider for simplicity one dimension. Let the first derivative of \(\psi = \psi(x) \) have a jump discontinuity \(\psi'(x_0 -) \neq \psi'(x_0 +) \) at \(x_0 \). Let \(\psi''(x_0) = 0 \) and \(\psi'''(x_0) = (d^3/dx^3) \psi(x) \) when \(x \neq x_0 \), then the correct formula for \((d/dx)^3 \times \psi(x) \) involves a Dirac δ function:

\[\left(\frac{d}{dx} \right)^3 \psi(x) = \delta''(x) + [\psi'(x_0 -) - \psi'(x_0 +)] \delta(x - x_0). \]

(3)

Thus we have

\[-\frac{1}{2} \int_{-\infty}^{\infty} \psi^* \left(\frac{d}{dx} \right)^3 \psi \, dx \]

\[= -\frac{1}{2} \left(\int_{x_0}^{\infty} - \int_{-\infty}^{x_0} \right) \psi^* \left(\frac{d}{dx} \right)^3 \psi \, dx \]

\[- \frac{1}{2} \psi^* (x_0) \left[\psi'(x_0 -) - \psi'(x_0 -) \right]. \]

(4)

The three-dimensional version is

\[-\frac{1}{2} \int \psi^* \nabla^2 \psi \, dV = -\frac{1}{2} \int_{V} \psi^* \nabla^2 \psi \, dV \]

\[= -\frac{1}{2} \int_{S} \psi^* (\nabla \psi - \nabla \psi) \cdot dS, \]

(5)

where \(f_{V} \psi^* \psi \, dV \) denotes the integral over the volume excluding the surface of discontinuity \(S \), and \((\nabla \psi - \nabla \psi) \) denotes the discontinuity in the gradient across the surface and represents the “strength” of the δ function obtained by differentiating the discontinuous function \(\nabla \psi \) across the surface. By integration by parts (Green's theorem), the right-hand side of Eq. (5) is \(-\frac{1}{2} \int (\nabla \psi)^* \cdot (\nabla \psi) \, dV \). Hence Eqs. (1) and (2) are equivalent when Eq. (5) is used to evaluate the right-hand side of Eq. (2). Q.E.D.

By way of example, the augmented-plane-wave method of Slater1,6,7 uses continuous wave functions with discontinuous first derivatives. Slater1 clearly understood the content of Eqs. (2)-(5), which he stated more or less in words (also see Ref. 2). Indeed, the rigorous mathematical theory of δ functions came several years later.5

If \(\psi \) itself is discontinuous, the kinetic-energy expectation value is infinite, but the infinity is easily identified and removed. The essence of this exorcism is revealed by the following heuristic (but decidedly nonrigorous) considerations. (The
integral of a discontinuous function times a δ function which appears below is irreconcilably outside the theory of generalized functions.) The analogs of Eqs. (3) and (4) are

\[
\left(\frac{d}{dx} \right)^2 \psi(x) = \tilde{\delta}''(x) + [\psi'(x_0 + 0) - \psi'(x_0 - 0)] \delta(x - x_0) + [\psi(x_0 + 0) - \psi(x_0 - 0)] \delta(x - x_0) , \]

(6)

\[
- \frac{1}{2} \int_{-\infty}^{\infty} \psi^* \left(\frac{d}{dx} \right)^2 \psi \, dx
\]

\[
= - \frac{1}{2} \left(\int_{-\infty}^{0} + \int_{0}^{\infty} \right) \psi^* \left(\frac{d}{dx} \right)^2 \psi \, dx
\]

\[
- \frac{1}{2} \psi^*(x_0) \int \left[\psi'(x_0 + 0) - \psi'(x_0 - 0) \right] \delta(x - x_0) \]

\[
+ \frac{1}{2} \left[\left(\frac{d}{dx} \right)^2 \psi^* \right]_{x=x_0} \delta(x - x_0) - \psi(x_0 - 0) , \]

(7)

where \(\delta''(x) = (d^2/dx^2) \delta(x - x_0) \). Because of the discontinuity, \(\psi^*(x_0) \) and \(\left[(d/dx) \psi^* \right]_{x=x_0} \) have no meaning, but heuristically we interpret them as averages (a and c are arbitrary numbers):

\[
\psi^*(x_0) = c \psi^*(x_0 - 0) + (1 - c) \psi^*(x_0 + 0) ,
\]

(8)

\[
\left[\left(\frac{d}{dx} \right)^2 \psi^* \right]_{x=x_0} = (1 - a) \psi^*(x_0 - 0) + a \psi^*(x_0 + 0)
\]

\[
+ \left[\psi'(x_0 + 0) - \psi'(x_0 - 0) \right] \delta(x - x_0) \]

(9)

With Eqs. (8) and (9), Eq. (7) has three parts: (i) a "volume" integral excluding the "surface" of discontinuity; (ii) two "surface" terms involving arbitrary constants \(a \) and \(c \); (iii) an infinite term, \(\frac{1}{2} |\psi(x_0 + 0) - \psi(x_0 - 0)|^2 \delta(x - x_0) \). The "volume" and "surface" terms are the one-dimensional version of the kinetic-energy part of the Schlosser-Marcus expression,

\[
- \frac{1}{2} \int \psi^* \nabla^2 \psi \, dV - \frac{1}{2} \int \psi^* \nabla \psi \cdot \nabla \psi \, dV
\]

\[
+ \frac{1}{2} \int \frac{d \mathbf{S}}{\varepsilon} \left[\alpha^* \nabla \theta_0 + (1 - \alpha) \nabla \theta_1 \right]^* \left(\psi \psi \right)
\]

\[
- \frac{1}{2} \int \frac{d \mathbf{S}}{\varepsilon} \left[(1 - c) \psi + c \psi \right]^* \left[\nabla \psi - \nabla \psi \right] \cdot d \mathbf{S} . \]

(10)

The infinite term is proportional to \(|\psi(x_0 + 0) - \psi(x_0 - 0)|^2 \) (in three dimensions, \(|\theta_0 - \psi_1|^2 \)), which is second order in \(|\psi - \psi_{\text{exact}}| \), since

\[
|\psi(x_0 + 0) - \psi(x_0 - 0)| \leq |\psi(x_0 + 0) - \psi_{\text{exact}}| + |\psi(x_0 - 0) - \psi_{\text{exact}}| .
\]

(11)

Thus, the Schlosser-Marcus expression is the finite part of the energy expectation value, and it is stationary because the omitted infinite part is of second order.

There is no question of the validity of the Schlosser-Marcus expression [Eq. (10) above], and the above derivation serves to tie the formula to the more familiar energy expectation value.

The above result can be derived rigorously by first smoothing \(\psi \left(\psi_0 \right) \), then letting the smoothed \(\psi_1 \) approach the discontinuous \(\psi \). The values of \(a \) and \(c \) depend on the details of the smoothing process. One new feature arises: If \(\psi_1 \) in \(\langle \psi_1 | - \frac{1}{2} \nabla^2 \psi_1 \rangle \), then \(a = c \) (always) and Eq. (10) is real; if \(\psi_1 \) and \(\psi_0 \) approach \(\psi \) at different rates in \(\langle \psi_1 | - \frac{1}{2} \nabla^2 \psi_1 \rangle \), then \(a \neq c \) is the rule, and Eq. (10) is not necessarily real.

The authors thank Professor Joseph O. Hirschfelder for helpful suggestions and for pointing out that an alternative (but not equivalent) approach to the above problem is the generalization of the momentum and Laplacian operators to hold on a finite interval without requiring functions to vanish at the boundaries.10