Expansion of a function about a displaced center

Harris J. Silverstone and Richard K. Moats
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 7 June 1977)

A simpler, more general version of a formula given by Sharma for the expansion of functions of the form,
\[F(\mathbf{r}) = f(\mathbf{r}) Y_L^m(\theta, \phi), \]
in terms of spherical harmonics and radial functions at a new origin, is derived from an earlier treatment of the expansion problem based on Fourier transforms.5

Recently Sharma1 re-examined the problem of expressing a function of the form \[F(\mathbf{r} - \mathbf{R}) = \sum_{l=0}^{n} \sum_{m=-l}^{l} v_{l2l}(r, R) Y_l^m(\theta, \phi) \]
in terms of spherical harmonics and radial functions at a new origin. He obtained a formula for the new radial function as a quadrature involving the old radial function. We wish to give here a simpler and more general formula, based on our earlier treatment of the expansion problem using Fourier transforms.5

The formula we wish to establish is, in the notation of Ref. 2,
\[v_{l2l}(r, R) = \sum_{l=0}^{n} \sum_{m=-l}^{l} C_{l2l} \frac{r}{R} Y_l^m(\theta, \phi) Y_l^m(\theta, \phi), \]

This formula is more general than Sharma’s [Eqs. (1), (16a), and (17a)-(17d) of Ref. 1] in that the vector from the old origin to the new one, \(\overline{R} \), need not lie along the \(z \) axis. At the same time it is simpler, in that the use of the well-known quantity \(C_{l2l} \) of Eq. (2)—formulas for which appear in many standard references4,5—replaces three summations in Sharma’s Eq. (17b).

The derivation of Eqs. (1)-(4) is given, save for one final step, in Eqs. (20), (21), (17), and (18) of our earlier paper,5 which gives Eqs. (1) and (2), but instead of Eqs. (3) and (4), the pair of equations
\[v_{l2l}(r, R) = \frac{r}{R} \int _{-\infty}^{\infty} dk k^2 j_l(kR) j_l(kR) \bar{f}(k) \]
\[\bar{f}(k) = 4\pi l^2 \int _{0}^{\infty} dr r^{l+2} j_l(kr) \bar{f}(kr). \]

Here, \(j_l(z) \) is the usual spherical Bessel function. Substitution of Eq. (6) into Eq. (5) and interchange of the two integrations,
\[v_{l2l}(r, R) = \int _{0}^{\infty} dr \frac{r^{l+2}}{R^2} j_l(kr) \bar{f}(kr) \int _{-\infty}^{\infty} dk k^2 j_l(kR) j_l(kR) \bar{f}(kr), \]

leads to an integral over a triple product of spherical Bessel functions that is closely related to one that occurs in the derivation of the bipolar expansion formula4 for \(r R^2 \), and that can be similarly evaluated by contour integration. The result,
\[\int _{-\infty}^{\infty} dk k^2 j_l(kR) j_l(kr) \bar{f}(kr) \]
\[= \frac{1}{2} \frac{(l + 2)}{l + 2} \pi R^2 \int _{0}^{\infty} dr \frac{r^{l+2}}{R^2} j_l(kr) \bar{f}(kr), \]
\[= 0, \quad r' < |r - R| \text{ or } r' > r + R, \]
when substituted into Eq. (7), yields Eqs. (3) and (4).
3J. A. Gaunt, Philos. Trans. R. Soc. Lond. A 228, 151 (1929).