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Abstract. Pade approximants give Stark effect energies for excited states of hydrogen that 
are considerably more accurate than simple perturbation theory. In one example, Pad6 
approximants for an n = 25 state lie within the experimental uncertainty, while simple 
perturbation theory lies outside. In a second example, Pade approximants for an n = 30 
state fall inside the theoretical ionisation width, while simple perturbation theory falls 
outside. This behaviour appears to be general. 

Recent experiments by Koch (1978), Littman et a1 (1978), Zimmerman et a1 (1979), 
Freeman et a1 (1978), Freeman and Economou (1979), Feneuille et a1 (1979), Beyer 
and Kleinpoppen (1978), and other workers have sparked interest in calculating the 
energy shifts of highly excited states of hydrogen and other atoms in an electric field F. 
At least six methods are currently being used: (1) Breit-Wigner analysis of the Weyl ‘m 
function’, asymptotic expansion coefficient or phaseshift of numerical or semi-numeri- 
cal solutions for the resonant energy E ( F )  = E R ( F )  - iT(F)/2 of the Schrodinger 
equation (Hehenberger et a1 1974, Damburg and Kolosov 1976, Hatton 1977); (2) 
variational solution (Herrick 1976, Froelich and Brandas 1975); (3) complex coor- 
dinate methods (Reinhardt 1976, Brandas and Froelich 1977, Cerjan et a1 1978); (4) 
classical methods (Banks and Leopold 1978a, b, 1979); ( 5 )  numerical diagonalisation 
of the energy matrix (Littman et a1 1978, Zimmerman et a1 1979); and (6) Rayleigh- 
Schrodinger perturbation theory (RSPT) (Silverstone 1978, Silverstone et a1 1979). 
Methods (l), (2), ( 3 )  and ( 5 ) ,  which must treat each state and each field strength as an 
entirely separate calculation, are somewhat cumbersome, as is (4), unless the suggested 
formulae, which represent fits to the numerical solutions, are used. Method (6), RSPT, is 
more easily used, but it produces a divergent asymptotic power series whose ‘best’ 
partial sum may not be sufficiently accurate. 

The purpose of this letter is to report that Pad6 approximants of the perturbation 
series can greatly accelerate the ‘apparent convergence’ to within experimental 
accuracy (or sometimes to within the field-ionisation linewidth r) for many states of 
experimental interest. A number of cases we have analysed, two of which are presented 
in this letter, lead us to conclude that diagonal or paradiagonal sequences of Pad6 
approximants generally give significantly more precise results for the hydrogen Stark 
problem than do RSPT partial sums. 

The method of Pad6 approximants has been employed previously in several other 
areas of atomic physics (Gillespie 1977, Cohen and McEachran 1978, Ortolani and 
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Turchetti 1978) and in studies of quantum-mechanical perturbation theory (reviewed 
by Baker 1975 and Killingbeck 1977; see also Amos 1978). The Pade approximant 
(see, for example, Baker 1975) [L/M] to E R ( F )  is the quotient of two polynomials of 
degrees L and M in F, whose power series agrees with that of ER(F) through order 
L+M. It is easy to calculate [ L / M ]  recursively via Wynn’s identity (see Baker 1975), 

[L/M+l]=[L/M]+{([L+l/M:-[L/M])-’+([L-l/M]-[L/M])-’ 
- ( [ L / M  - 11 - [L/M])- l}-:  (1) 

from the [LIO], which are also the partial sums of the perturbation series, 
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and from the auxiliary conditions (see Baker 1975, p 76), [L/-1] = 00 and [ -1 /M]  = 0. 
Thus a calculation of the Pad6 approximants [ L / M ]  with L + M < N requires only the 
knowledge of the coefficients Ekk’ of RSPT through order N. Since the coefficients are 
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Figure 1. Full line: measured energy (Koch 1978) 
for the n-25 state of hydrogen (nl, n2, lml); 
(21, 2, 1) in an electric field F = 2 5 1 4 ( 3 ) V c m -  ; 
E , , , = - 4 ~ 9 8 6 6 ( 2 9 ) ~ 1 0 - ~  au. Circles: Rayleigh- 
Schrodinger perturbation theory summed to order 
N. Crosses: Pad6 approximants [$N/$W].  E,,,- 
[12/12]=0~4*2.9xlO-’au, where the error is 
caused predominantly by uncertainty in the 
measured value of F. 
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now available to rather high order (Silverstone 1978, Silverstone et a1 1979), cal- 
culation of a large array of Pad6 approximants for the hydrogen Stark problem (Koch 
1978) is possible. 

The perturbation series here were generated by an adaptation of 13 7 of Silverstone 
(1978). 

We select two excited states of the hydrogen atom to discuss in detail. The ( n  = 25, 
nl  = 21, n2 = 2, / m /  = 1) state is one for which accurate experimental values of the 
energy shift are known (Koch 1978). This state is typical of n1 > n2 states for which the 
divergent perturbation series is oscillatory. On the other hand, the ( n  = 30, nl  = 0, 
n2 = 29, /mi = 0) state is typical of n 2 >  n l  states for which the perturbation series is 
monotonic. Accurate values of the energy shift and width for this latter state (among 
others) have been calculated by Damburg and Kolosov (1976 and private com- 
munication) using method (1) and by Banks and Leopold (1978a, b, 1979, and private 
communication) using method (4). 

The Nth-order partial sums of RSPT (indicated by full circles in figures 1 and 2), the 
diagonal Pad6 approximants [4N/$'V] (indicated by crosses), and the experimental or 
theoretical energy (indicated by horizontal lines) are shown in figures 1 and 2 and in 

Table 1. Energy of two excited states of hydrogen in an electric field, calculated by 
perturbation theory and by Pad6 approximants, in au. 

n = 25, n l  = 21, n2 = 2, m = 1 n =30, nl=O,  n2= 29, m = 0 

Pad6 Pad6 
Order RSPT approximant RSPT approximant 
N partial sum [SNIfNI partial sum [ $ N / $ N ]  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

-0~000800000 
-0~000451665 
-0,000507404 
-0.000489537 
-0~000503325 
-0,000493588 
-0.000502731 
-0,000494270 
-0~000503030 
-0.000493837 
-0.000504004 
-0.000492550 
-0,000505839 
-0,000490156 
-0,000509025 
-0.000485996 
-0.0005 14503 
-0,000478795 
-0,000524028 
-0.000466156 
-0,000540891 
-0.000443557 
-0.00057 133 
-0.0004023 
-0.000627 

-0~000800000 

-0,000499715 

-0,000496455 

-0~000500602 

-0,000498629 

-0,000498629 

-0,000498703 

-0.000498698 

-0.000498790 

-0.000498703 

-0.000498703 

-0.000498703 

-0.000498703 

-0,000555556 
-0~000758580 
-0,000774258 
-0.000778713 
-0.000780724 
-0.000781797 
-0,000782453 
-0.000782883 
-0,000783183 
-0,000783401 
-0.000783566 
-0.000783693 
-0.000783794 
-0,000783876 
-0.000783943 
-0.000783999 
-0,000784046 
-0,000784087 
-0,000784121 
-0.000784 152 
-0.000784179 
-0,000784202 
-0,000784223 
-0.00078424 
-0.00078426 

-0~000555556 

-0,000775570 

-0.000782546 

-0,000784207 

-0.00078395 1 

-0,000784237 

-0.000784443 

-0.000784386 

-0.000784469" 

-0.0007844@ 

-0.000784478 

-0,0007844@ 

-0.00078446J 

a There is some uncertainty in the underlined digits. 
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table 1. For the oscillatory case, the sequence of diagonal Pad6 approximants (other 
sequences, such as paradiagonal sequences, behave similarly) yields an improvement of 
four significant figures over the best partial sum (sixth order)-well within the experi- 
mental uncertainty. The Pad6 approximants retain numerical significance even when 
the partial sums are rapidly pulling away, as one can see by comparing [12/12] with the 
24th-order partial sum, the last one we could fit on figure 1. For the monotoniccase, the 
gain in significant figures is less, but the improvement is still significant. Here we 
stopped at 24th order because of round-off error in the 25th-order term. This is also 
approximately where the terms stop decreasing and start increasing in magnitude. 
(Note that the scales for figures 1 and 2 are considerably different.) 

We can further justify the use of Pad6 approximants here by comparison with a 
standard textbook application of Pad6 approximants: to sum the asymptotic expansion 
x-' e-' n ! (-x)-" for the exponential-type integral (see Baker 1975). The resonance 
energy for hydrogen in the Stark effect has been shown (Silverstone 1979) to be 
asymptotically equal to a sum of exponential-type integrals, the asymptotic expansions 
for which give an asymptotic expansion for the RSPT Ea"'. The usefulness of Pade 
approximants for the exponential-type integral would accordingly be expected to carry 
over to the Stark case. There is, however, a slight weakness to the argument as applied 
to the large values of n l  and n2 used here: a much higher order of perturbation theory 
would be required for the Eg'Fk to behave asymptotically as if from an exponential- 
type integral. 

In summary, the combination of the Pade technique with Rayleigh-Schrodinger 
perturbation theory, as is suggested by the asymptotics of the Stark effect, but as is more 
convincingly demonstrated practically and graphically by figures 1 and 2, is a powerful, 
accurate, and practical method for calculating Stark effect energy shifts. 

It is a pleasure to thank R Damburg, V Kolosov and J Leopold for supplying the results 
of calculations of energy shifts prior to publication. This research was supported in part 
by NSF Grant No PHY78-25655, in part by the Alfred P Sloan Foundation, and in part 
by The Johns Hopkins University. 
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